On some modifications of n-th von Neumann–Jordan constant for Banach spaces

被引:0
|
作者
Maciej Ciesielski
Ryszard Płuciennik
机构
[1] Poznan University of Technology,Institute of Mathematics
来源
Banach Journal of Mathematical Analysis | 2020年 / 14卷
关键词
von Neumann–Jordan constant; Modified ; -th von Neumann–Jordan constant; Uniformly non-; -Banach; -convexity; 46E30; 46E40; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study, among others, upper, lower, upper modified and lower modified n-th von Neumann–Jordan constant and relationships between them. There are characterized uniformly non-ln1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{n}^{1}$$\end{document} Banach spaces in terms of the upper modified n-th von Neumann–Jordan constant. Moreover, this constant is calculated explicitly for Lebesgue spaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document} and lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p}$$\end{document}(1≤p≤∞).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le p\le \infty ).$$\end{document} Finally, it is shown that the sequence of n-th upper and modified upper von Neumann–Jordan constants for the space Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} as well as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}(2<p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2<p<\infty )$$\end{document} converges to Bp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p^2$$\end{document}, where Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} is the best type (2, p) constant in the Khinthine inequality for the case 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}.
引用
收藏
页码:650 / 673
页数:23
相关论文
共 50 条
  • [41] THE n-TH JAMES CONSTANTS OF INTERPOLATION SPACES
    Betiuk-Pilarska, Anna
    Szczepanik, Mariusz
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (10) : 2039 - 2047
  • [42] AN INEQUALITY ON JORDAN-VON NEUMANN CONSTANT AND JAMES CONSTANT ON Zp,q SPACE
    Yang, Changsen
    Li, Haiying
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (01): : 97 - 102
  • [43] On the generalized von Neumann-Jordan constant CNJ(p)(X)
    Changsen Yang
    Wang Tianyu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 860 - 866
  • [44] JORDAN-VON NEUMANN CONSTANT FOR BANAS-FRACZEK SPACE
    Yang, Changsen
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02): : 185 - 192
  • [45] ON A GENERALIZED JORDAN-VON NEUMANN TYPE CONSTANT AND NORMAL STRUCTURE
    Tang, Li
    Ji, Donghai
    Wang, Xiaomei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 347 - 359
  • [46] A simple inequality for the von Neumann-Jordan and James constants of a Banach space
    Takahashi, Yasuji
    Kato, Mikio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 602 - 609
  • [47] ON THE PTOLEMY CONSTANT OF SOME CONCRETE BANACH SPACES
    Zuo, Zhan-Fei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 945 - 956
  • [48] On James and Jordan- von Neumann constants of Lorentz sequence spaces
    Kato, M
    Maligranda, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) : 457 - 465
  • [49] Multipliers for von Neumann Schatten Bessel sequences in separable Banach spaces
    Javanshiri, Hossein
    Choubin, Mehdi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 : 108 - 138
  • [50] GENERALIZED VON NEUMANN-JORDAN CONSTANT FOR THE BANAS-FRACZEK SPACE
    Yang, Changsen
    Li, Haiying
    COLLOQUIUM MATHEMATICUM, 2018, 154 (01) : 149 - 156