On some modifications of n-th von Neumann–Jordan constant for Banach spaces

被引:0
|
作者
Maciej Ciesielski
Ryszard Płuciennik
机构
[1] Poznan University of Technology,Institute of Mathematics
来源
Banach Journal of Mathematical Analysis | 2020年 / 14卷
关键词
von Neumann–Jordan constant; Modified ; -th von Neumann–Jordan constant; Uniformly non-; -Banach; -convexity; 46E30; 46E40; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study, among others, upper, lower, upper modified and lower modified n-th von Neumann–Jordan constant and relationships between them. There are characterized uniformly non-ln1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{n}^{1}$$\end{document} Banach spaces in terms of the upper modified n-th von Neumann–Jordan constant. Moreover, this constant is calculated explicitly for Lebesgue spaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document} and lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p}$$\end{document}(1≤p≤∞).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le p\le \infty ).$$\end{document} Finally, it is shown that the sequence of n-th upper and modified upper von Neumann–Jordan constants for the space Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} as well as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}(2<p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2<p<\infty )$$\end{document} converges to Bp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p^2$$\end{document}, where Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} is the best type (2, p) constant in the Khinthine inequality for the case 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}.
引用
收藏
页码:650 / 673
页数:23
相关论文
共 50 条
  • [31] On a new geometric constant related to the von Neumann-Jordan constant
    Yang, Changsen
    Wang, Fenghui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 555 - 565
  • [32] Relations between generalized von Neumann-Jordan and James constants for quasi-Banach spaces
    Kwun, Young Chel
    Mehmood, Qaisar
    Nazeer, Waqas
    Ul Haq, Absar
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [33] An inequality between Jordan-von Neumann constant and James constant
    Yang, Changsen
    Li, Haiying
    APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 277 - 281
  • [34] Von Neumann–Schatten Frames in Separable Banach Spaces
    Ghadir Sadeghi
    Aliakbar Arefijamaal
    Mediterranean Journal of Mathematics, 2012, 9 : 525 - 535
  • [35] VON NEUMANN-JORDAN CONSTANT FOR THE NORMS ASSOCIATED WITH CONICS
    Ikeda, Toshiharu
    Kai, Shosuke
    Kato, Mikio
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (04) : 807 - 820
  • [36] Derivations into n-th duals of ideals of Banach algebras
    Gordji, M. Eshaghi
    Memarbashi, R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2008, 34 (01) : 59 - 71
  • [37] The retraction constant in some Banach spaces
    Baronti, M
    Casini, E
    Franchetti, C
    JOURNAL OF APPROXIMATION THEORY, 2003, 120 (02) : 296 - 308
  • [38] Uniformly bounded Nemytskij operators between the Banach spaces of functions of bounded n-th variation
    Wrobel, Malgorzata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 451 - 456
  • [39] On the n-th linear polarization constant of Rn
    Pinasco, Damian
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3593 - 3605
  • [40] Von Neumann-Schatten Frames in Separable Banach Spaces
    Sadeghi, Ghadir
    Arefijamaal, Aliakbar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (03) : 525 - 535