On some modifications of n-th von Neumann–Jordan constant for Banach spaces

被引:0
|
作者
Maciej Ciesielski
Ryszard Płuciennik
机构
[1] Poznan University of Technology,Institute of Mathematics
来源
Banach Journal of Mathematical Analysis | 2020年 / 14卷
关键词
von Neumann–Jordan constant; Modified ; -th von Neumann–Jordan constant; Uniformly non-; -Banach; -convexity; 46E30; 46E40; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study, among others, upper, lower, upper modified and lower modified n-th von Neumann–Jordan constant and relationships between them. There are characterized uniformly non-ln1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{n}^{1}$$\end{document} Banach spaces in terms of the upper modified n-th von Neumann–Jordan constant. Moreover, this constant is calculated explicitly for Lebesgue spaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document} and lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p}$$\end{document}(1≤p≤∞).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le p\le \infty ).$$\end{document} Finally, it is shown that the sequence of n-th upper and modified upper von Neumann–Jordan constants for the space Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} as well as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}(2<p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2<p<\infty )$$\end{document} converges to Bp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p^2$$\end{document}, where Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} is the best type (2, p) constant in the Khinthine inequality for the case 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}.
引用
收藏
页码:650 / 673
页数:23
相关论文
共 50 条
  • [21] An extension of a simply inequality between von Neumann–Jordan and James constants in Banach spaces
    Chang Sen Yang
    Feng Hui Wang
    Acta Mathematica Sinica, English Series, 2017, 33 : 1287 - 1296
  • [22] An Extension of a Simply Inequality Between von Neumann–Jordan and James Constants in Banach Spaces
    Chang Sen YANG
    Feng Hui WANG
    Acta Mathematica Sinica, 2017, 33 (09) : 1287 - 1296
  • [23] ON THE CONVEXITY OF VON NEUMANN-JORDAN CONSTANT
    Komuro, Naoto
    Mitani, Ken-Ichi
    Saito, Kichi-Suke
    Tanaka, Ryotaro
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (11) : 2263 - 2268
  • [24] A note on Jordan-von Neumann constant and James constant
    Yang, Changsen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 98 - 102
  • [25] An Extension of a Simply Inequality Between von Neumann-Jordan and James Constants in Banach Spaces
    Yang, Chang Sen
    Wang, Feng Hui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (09) : 1287 - 1296
  • [26] N-TH ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Hu, Manfeng
    Zhu, Jiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [27] A NOTE ON JORDAN-VON NEUMANN CONSTANT FOR SPACE
    Yang, Changsen
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 499 - 504
  • [28] ON THE JAMES TYPE CONSTANT AND VON NEUMANN-JORDAN CONSTANT FOR A CLASS OF BANAS-FRACZIECK TYPE SPACES
    Yang, Changsen
    Yang, Xiangzhao
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 551 - 558
  • [29] ANOTHER VERSION OF THE VON NEUMANN-JORDAN CONSTANT
    Fetter Nathansky, Helga
    Perez Garcia, Victor
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (01) : 125 - 139
  • [30] Relations between generalized von Neumann-Jordan and James constants for quasi-Banach spaces
    Young Chel Kwun
    Qaisar Mehmood
    Waqas Nazeer
    Absar Ul Haq
    Shin Min Kang
    Journal of Inequalities and Applications, 2016