On some modifications of n-th von Neumann–Jordan constant for Banach spaces

被引:0
|
作者
Maciej Ciesielski
Ryszard Płuciennik
机构
[1] Poznan University of Technology,Institute of Mathematics
关键词
von Neumann–Jordan constant; Modified ; -th von Neumann–Jordan constant; Uniformly non-; -Banach; -convexity; 46E30; 46E40; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
We study, among others, upper, lower, upper modified and lower modified n-th von Neumann–Jordan constant and relationships between them. There are characterized uniformly non-ln1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{n}^{1}$$\end{document} Banach spaces in terms of the upper modified n-th von Neumann–Jordan constant. Moreover, this constant is calculated explicitly for Lebesgue spaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document} and lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{p}$$\end{document}(1≤p≤∞).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le p\le \infty ).$$\end{document} Finally, it is shown that the sequence of n-th upper and modified upper von Neumann–Jordan constants for the space Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} as well as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}(2<p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2<p<\infty )$$\end{document} converges to Bp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p^2$$\end{document}, where Bp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_p$$\end{document} is the best type (2, p) constant in the Khinthine inequality for the case 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}.
引用
收藏
页码:650 / 673
页数:23
相关论文
共 50 条
  • [1] On some modifications of n-th von Neumann-Jordan constant for Banach spaces
    Ciesielski, Maciej
    Pluciennik, Ryszard
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) : 650 - 673
  • [2] On the von Neumann-Jordan constant for Banach spaces
    Kato, M
    Takahashi, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) : 1055 - 1062
  • [3] ON (n, p)-TH VON NEUMANN-JORDAN CONSTANTS FOR BANACH SPACES
    Li, Haiying
    Yang, Xiangrun
    Yang, Changsen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 583 - 600
  • [4] ON THE GENERALIZED VON NEUMANN-JORDAN TYPE CONSTANT FOR SOME CONCRETE BANACH SPACES
    Zuo, Zhan-fei
    Wang, Liang-Wei
    Zhao, Yong-Xiang
    Wu, Yan-Qiu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (03): : 597 - 615
  • [5] Wheeling around von Neumann-Jordan constant in Banach spaces
    Alonso, J.
    Martin, P.
    Papini, P. L.
    STUDIA MATHEMATICA, 2008, 188 (02) : 135 - 150
  • [6] The relations between the von Neumann–Jordan type constant and some geometric properties of Banach spaces
    Yuankang Fu
    Yongjin Li
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [7] THE GENERALIZED VON NEUMANN-JORDAN CONSTANT AND NORMAL STRUCTURE IN BANACH SPACES
    Wang, Xi
    Cui, Yunan
    Zhang, Chiping
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (04): : 206 - 214
  • [8] The relations between the von Neumann-Jordan type constant and some geometric properties of Banach spaces
    Fu, Yuankang
    Li, Yongjin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [9] The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces
    Jiménez-Melado, A
    Llorens-Fuster, E
    Saejung, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (02) : 355 - 364
  • [10] The von Neumann-Jordan constant for the Lebesgue spaces
    Clarkson, JA
    ANNALS OF MATHEMATICS, 1937, 38 : 114 - 115