Categoricity in homogeneous complete metric spaces

被引:0
|
作者
Åsa Hirvonen
Tapani Hyttinen
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
关键词
Primary 03C45; Secondary 03C52;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new approach to the model theory of metric structures by defining the notion of a metric abstract elementary class (MAEC) closely resembling the notion of an abstract elementary class. Further we define the framework of a homogeneous MAEC were we additionally assume the existence of arbitrarily large models, joint embedding, amalgamation, homogeneity and a property which we call the perturbation property. We also assume that the Löwenheim-Skolem number, which in this setting refers to the density character of the set instead of the cardinality, is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_0}$$\end{document}. In these settings we prove an analogue of Morley’s categoricity transfer theorem. We also give concrete examples of homogeneous MAECs.
引用
收藏
页码:269 / 322
页数:53
相关论文
共 50 条
  • [1] Categoricity in homogeneous complete metric spaces
    Hirvonen, Asa
    Hyttinen, Tapani
    ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (3-4): : 269 - 322
  • [2] Model theoretic stability and categoricity for complete metric spaces
    Saharon Shelah
    Alexander Usvyatsov
    Israel Journal of Mathematics, 2011, 182 : 157 - 198
  • [3] Model theoretic stability and categoricity for complete metric spaces
    Shelah, Saharon
    Usvyatsov, Alexander
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 182 (01) : 157 - 198
  • [4] METRIC DIMENSION OF COMPLETE METRIC SPACES
    BOOKHOUT, GA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (04) : 754 - +
  • [5] Finite Homogeneous Metric Spaces
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (05) : 757 - 773
  • [6] ON HOMOGENEOUS SPACES OF METRIC GROUPS
    FLACHSMEYER, J
    MATHEMATISCHE NACHRICHTEN, 1985, 120 : 229 - 235
  • [7] Finite Homogeneous Metric Spaces
    V. N. Berestovskii
    Yu. G. Nikonorov
    Siberian Mathematical Journal, 2019, 60 : 757 - 773
  • [8] HOMOGENEOUS SPACES WITH INNER METRIC
    BERESTOVSKII, VN
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (02): : 268 - 271
  • [9] Metric compatibility and determination in complete metric spaces
    Daniilidis, Aris
    Le, Tri Minh
    Salas, David
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (04)
  • [10] ON GENERALIZED COMPLETE METRIC SPACES
    STEIN, JD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (02) : 439 - &