Categoricity in homogeneous complete metric spaces

被引:0
|
作者
Åsa Hirvonen
Tapani Hyttinen
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
Archive for Mathematical Logic | 2009年 / 48卷
关键词
Primary 03C45; Secondary 03C52;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new approach to the model theory of metric structures by defining the notion of a metric abstract elementary class (MAEC) closely resembling the notion of an abstract elementary class. Further we define the framework of a homogeneous MAEC were we additionally assume the existence of arbitrarily large models, joint embedding, amalgamation, homogeneity and a property which we call the perturbation property. We also assume that the Löwenheim-Skolem number, which in this setting refers to the density character of the set instead of the cardinality, is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_0}$$\end{document}. In these settings we prove an analogue of Morley’s categoricity transfer theorem. We also give concrete examples of homogeneous MAECs.
引用
收藏
页码:269 / 322
页数:53
相关论文
共 50 条