Categoricity in homogeneous complete metric spaces

被引:0
|
作者
Åsa Hirvonen
Tapani Hyttinen
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
Archive for Mathematical Logic | 2009年 / 48卷
关键词
Primary 03C45; Secondary 03C52;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new approach to the model theory of metric structures by defining the notion of a metric abstract elementary class (MAEC) closely resembling the notion of an abstract elementary class. Further we define the framework of a homogeneous MAEC were we additionally assume the existence of arbitrarily large models, joint embedding, amalgamation, homogeneity and a property which we call the perturbation property. We also assume that the Löwenheim-Skolem number, which in this setting refers to the density character of the set instead of the cardinality, is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_0}$$\end{document}. In these settings we prove an analogue of Morley’s categoricity transfer theorem. We also give concrete examples of homogeneous MAECs.
引用
收藏
页码:269 / 322
页数:53
相关论文
共 50 条
  • [41] SELECTION THEOREMS FOR PARTITIONS OF COMPLETE METRIC SPACES
    SARBADHIKARI, H
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (12): : 953 - 956
  • [42] NOTES ON ORTHOGONAL-COMPLETE METRIC SPACES
    Nguyen Van Dung
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (01) : 154 - 160
  • [43] Fixed point theorems for complete metric spaces
    Raghuwanshi, Sonika
    Gupta, Vijay
    Ghosh, Suparna
    Bhardwaj, Ramakant
    Rai, Swapnil
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6996 - 6998
  • [44] COMPLETE QUASI-PSEUDO-METRIC SPACES
    KUNZI, HP
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (1-2) : 121 - 146
  • [45] FIXED-POINTS IN COMPLETE METRIC SPACES
    REICH, S
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (05): : 270 - &
  • [46] Generalized Suzuki (ψ, φ)-contraction in complete metric spaces
    Mebawondu, A. A.
    Mebawondu, S. I.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 963 - 978
  • [47] COMPLETE METRIC SPACES AS PROJECTIVE LIMITS OF GRAPHS
    HOLMES, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (48): : 389 - 396
  • [48] FIXED POINTS IN k COMPLETE METRIC SPACES
    Kikina, Luljeta
    Kikina, Kristaq
    DEMONSTRATIO MATHEMATICA, 2011, 44 (02) : 349 - 357
  • [49] VARIOUS COVERING SPECTRA FOR COMPLETE METRIC SPACES
    Sormani, Christina
    Wei, Guofang
    ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (01) : 171 - 202
  • [50] On complete metric spaces containing the Sierpinski curve
    Prajs, JR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3743 - 3747