Finite Homogeneous Metric Spaces

被引:5
|
作者
Berestovskii, V. N. [1 ,2 ]
Nikonorov, Yu. G. [3 ]
机构
[1] Sobolev Inst Math, 4 Koptuyg Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogov Str, Novosibirsk 630090, Russia
[3] Russian Acad Sci, Vladikavkaz Sci Ctr, Southern Math Inst, 22 Markus Str, Vladikavkaz 362027, Russia
关键词
finite Clifford-Wolf homogeneous metric space; finite (normal) homogeneous metric space; Kneser graph; (semi)regular polytope; vertex-transitive graph;
D O I
10.1134/S0037446619050021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors study the class of finite homogeneous metric spaces and some of its important subclasses that have natural definitions in terms of the metrics and well-studied analogs in the class of Riemannian manifolds. The relationships between these classes are explored. The examples of the corresponding spaces are built, some of which are the vertex sets of the special convex polytopes in Euclidean space. We describe the classes on using the language of graph theory, which enables us to provide some examples of finite metric spaces with unusual properties. Several unsolved problems are posed.
引用
收藏
页码:757 / 773
页数:17
相关论文
共 50 条
  • [1] Finite Homogeneous Metric Spaces
    V. N. Berestovskii
    Yu. G. Nikonorov
    Siberian Mathematical Journal, 2019, 60 : 757 - 773
  • [2] LIMITS OF FINITE HOMOGENEOUS METRIC SPACES
    Gelander, Tsachik
    ENSEIGNEMENT MATHEMATIQUE, 2013, 59 (1-2): : 195 - 206
  • [3] ON HOMOGENEOUS SPACES OF METRIC GROUPS
    FLACHSMEYER, J
    MATHEMATISCHE NACHRICHTEN, 1985, 120 : 229 - 235
  • [4] HOMOGENEOUS SPACES WITH INNER METRIC
    BERESTOVSKII, VN
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (02): : 268 - 271
  • [5] Finite homogeneous spaces
    Fora, A
    Al-Bsoul, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) : 1089 - 1094
  • [6] Homogeneous Finsler spaces with exponential metric
    Shanker, Gauree
    Kaur, Kirandeep
    ADVANCES IN GEOMETRY, 2020, 20 (03) : 391 - 400
  • [7] Metric aspects of noncommutative homogeneous spaces
    Li, Hanfeng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2325 - 2350
  • [8] NATURALLY REDUCTIVE HOMOGENEOUS (α, β)-METRIC SPACES
    Parhizkar, M.
    Moghaddam, H. R. Salimi
    ARCHIVUM MATHEMATICUM, 2021, 57 (01): : 1 - 11
  • [9] GEODESICS ON HOMOGENEOUS SPACES WITH AN INVARIANT METRIC
    ZAMORA, EL
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (01): : 77 - 82
  • [10] Categoricity in homogeneous complete metric spaces
    Åsa Hirvonen
    Tapani Hyttinen
    Archive for Mathematical Logic, 2009, 48 : 269 - 322