On the diameter of partition polytopes and vertex-disjoint cycle cover

被引:0
|
作者
Steffen Borgwardt
机构
[1] Technische Universität München,Fakultät für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
Diameter; Partitioning; Transportation polytope; Cycle cover; Combinatorial optimization; Mathematical programming; 90C08; 90C27; 90C35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the combinatorial diameter of partition polytopes, a special class of transportation polytopes. They are associated to partitions of a set X = {x1, . . . , xn} of items into clusters C1, . . . , Ck of prescribed sizes κ1 ≥ · · · ≥ κk. We derive upper bounds on the diameter in the form of κ1 + κ2, n − κ1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor \frac{n}{2} \rfloor}$$\end{document}. This is a direct generalization of the diameter-2 result for the Birkhoff polytope. The bounds are established using a constructive, graph-theoretical approach where we show that special sets of vertices in graphs that decompose into cycles can be covered by a set of vertex-disjoint cycles. Further, we give exact diameters for partition polytopes with k = 2 or k = 3 and prove that, for all k ≥ 4 and all κ1, κ2, there are cluster sizes κ3, . . . , κk such that the diameter of the corresponding partition polytope is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil \frac{4}{3} \kappa_2 \rceil}$$\end{document}. Finally, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(n(\kappa_1 + \kappa_2(\sqrt{k} - 1)))}$$\end{document} algorithm for an edge-walk connecting two given vertices of a partition polytope that also adheres to our diameter bounds.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [42] Vertex-disjoint cycles of the same length in tournaments
    Wang, Zhilan
    Qi, Yuzhen
    Yan, Jin
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 666 - 683
  • [43] Vertex-disjoint cycles containing specified edges
    Egawa, Y
    Faudree, RJ
    Györi, E
    Ishigami, Y
    Schelp, RH
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (01) : 81 - 92
  • [44] On vertex-disjoint cycles and degree sum conditions
    Gould, Ronald J.
    Hirohata, Kazuhide
    Keller, Ariel
    DISCRETE MATHEMATICS, 2018, 341 (01) : 203 - 212
  • [45] On energy ordering of vertex-disjoint bicyclic sidigraphs
    Hafeez, Sumaira
    Farooq, Rashid
    AIMS MATHEMATICS, 2020, 5 (06): : 6693 - 6713
  • [46] A Refinement of Theorems on Vertex-Disjoint Chorded Cycles
    Theodore Molla
    Michael Santana
    Elyse Yeager
    Graphs and Combinatorics, 2017, 33 : 181 - 201
  • [47] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Zou, Qingsong
    Li, Jiawang
    Ji, Zizheng
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1355 - 1361
  • [48] Large vertex-disjoint cycles in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 2000, 16 (03) : 359 - 366
  • [49] COVERING VERTICES OF A GRAPH BY VERTEX-DISJOINT PATHS
    NOORVASH, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A46 - A46
  • [50] Forbidden subgraphs for k vertex-disjoint stars
    Furuya, Michitaka
    Matsumoto, Naoki
    JOURNAL OF COMBINATORICS, 2018, 9 (04) : 721 - 738