On the diameter of partition polytopes and vertex-disjoint cycle cover

被引:0
|
作者
Steffen Borgwardt
机构
[1] Technische Universität München,Fakultät für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
Diameter; Partitioning; Transportation polytope; Cycle cover; Combinatorial optimization; Mathematical programming; 90C08; 90C27; 90C35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the combinatorial diameter of partition polytopes, a special class of transportation polytopes. They are associated to partitions of a set X = {x1, . . . , xn} of items into clusters C1, . . . , Ck of prescribed sizes κ1 ≥ · · · ≥ κk. We derive upper bounds on the diameter in the form of κ1 + κ2, n − κ1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor \frac{n}{2} \rfloor}$$\end{document}. This is a direct generalization of the diameter-2 result for the Birkhoff polytope. The bounds are established using a constructive, graph-theoretical approach where we show that special sets of vertices in graphs that decompose into cycles can be covered by a set of vertex-disjoint cycles. Further, we give exact diameters for partition polytopes with k = 2 or k = 3 and prove that, for all k ≥ 4 and all κ1, κ2, there are cluster sizes κ3, . . . , κk such that the diameter of the corresponding partition polytope is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil \frac{4}{3} \kappa_2 \rceil}$$\end{document}. Finally, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(n(\kappa_1 + \kappa_2(\sqrt{k} - 1)))}$$\end{document} algorithm for an edge-walk connecting two given vertices of a partition polytope that also adheres to our diameter bounds.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [31] Finding Arc and Vertex-Disjoint Paths in Networks
    Xie, Zheng
    Chen, Zhi
    Leng, Hongze
    Zhang, Jun
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, PROCEEDINGS, 2009, : 539 - +
  • [32] Reconfiguration of vertex-disjoint shortest paths on graphs
    Saito, Rin
    Eto, Hiroshi
    Ito, Takehiro
    Uehara, Ryuhei
    Journal of Graph Algorithms and Applications, 2024, 28 (03) : 87 - 101
  • [33] Dissemination of information in vertex-disjoint paths mode
    Hromkovic, J
    Klasing, R
    Stohr, EA
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1996, 15 (04): : 295 - 318
  • [34] Vertex-disjoint hexagons with chords in a bipartite graph
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 221 - 231
  • [35] COVERING VERTICES OF A GRAPH BY VERTEX-DISJOINT PATHS
    NOORVASH, S
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) : 159 - 168
  • [36] Large Vertex-Disjoint Cycles in a Bipartite Graph
    Hong Wang
    Graphs and Combinatorics, 2000, 16 : 359 - 366
  • [37] On Vertex-Disjoint Triangles in Tripartite Graphs and Multigraphs
    Qingsong Zou
    Jiawang Li
    Zizheng Ji
    Graphs and Combinatorics, 2020, 36 : 1355 - 1361
  • [38] A New Algorithm for Finding Vertex-Disjoint Paths
    Kurt, Mehmet
    Berberler, Murat
    Ugurlu, Onur
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2015, 12 (06) : 550 - 555
  • [39] OPTIMAL COVERING OF CACTI BY VERTEX-DISJOINT PATHS
    MORAN, S
    WOLFSTAHL, Y
    THEORETICAL COMPUTER SCIENCE, 1991, 84 (02) : 179 - 197
  • [40] Dissemination of Information in Vertex-Disjoint Paths Mode
    Hromkovic, J.
    Klasing, R.
    Stoehr, E. A.
    Computers and Artificial Intelligence, 15 (04):