On the diameter of partition polytopes and vertex-disjoint cycle cover

被引:0
|
作者
Steffen Borgwardt
机构
[1] Technische Universität München,Fakultät für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
Diameter; Partitioning; Transportation polytope; Cycle cover; Combinatorial optimization; Mathematical programming; 90C08; 90C27; 90C35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the combinatorial diameter of partition polytopes, a special class of transportation polytopes. They are associated to partitions of a set X = {x1, . . . , xn} of items into clusters C1, . . . , Ck of prescribed sizes κ1 ≥ · · · ≥ κk. We derive upper bounds on the diameter in the form of κ1 + κ2, n − κ1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor \frac{n}{2} \rfloor}$$\end{document}. This is a direct generalization of the diameter-2 result for the Birkhoff polytope. The bounds are established using a constructive, graph-theoretical approach where we show that special sets of vertices in graphs that decompose into cycles can be covered by a set of vertex-disjoint cycles. Further, we give exact diameters for partition polytopes with k = 2 or k = 3 and prove that, for all k ≥ 4 and all κ1, κ2, there are cluster sizes κ3, . . . , κk such that the diameter of the corresponding partition polytope is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil \frac{4}{3} \kappa_2 \rceil}$$\end{document}. Finally, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(n(\kappa_1 + \kappa_2(\sqrt{k} - 1)))}$$\end{document} algorithm for an edge-walk connecting two given vertices of a partition polytope that also adheres to our diameter bounds.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [21] Vertex-disjoint cycles in bipartite tournaments
    Bai, Yandong
    Li, Binlong
    Li, Hao
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1307 - 1309
  • [22] Vertex-disjoint cycles of the same length
    Verstraëte, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 45 - 52
  • [23] Vertex-disjoint paths in transposition graphs
    Fujita, Satoshi
    Proceedings of the 18th IASTED International Conference on Parallel and Distributed Computing and Systems, 2006, : 490 - 494
  • [24] VERTEX-DISJOINT QUADRILATERALS IN BIPARTITE GRAPHS
    YAN Jin LIU Guizhen (School of Mathematics & Systems Science
    Journal of Systems Science and Complexity, 2004, (04) : 532 - 537
  • [25] Vertex-disjoint paths in DCell networks
    Wang, Xi
    Fan, Jianxi
    Lin, Cheng-Kuan
    Jia, Xiaohua
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 96 : 38 - 44
  • [26] Vertex-disjoint cycles in local tournaments
    Li, Ruijuan
    Liang, Juanjuan
    Zhang, Xinhong
    Guo, Yubao
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [27] ON THE NUMBER OF VERTEX-DISJOINT CYCLES IN DIGRAPHS
    Bai, Yandong
    Manoussakis, Yannis
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2444 - 2451
  • [28] Dominator Tree Verification and Vertex-Disjoint Paths
    Georgiadis, Loukas
    Tarjan, Robert E.
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 433 - 442
  • [29] Partitioning a bipartite graph into vertex-disjoint paths
    Li, Jianping
    Steiner, George
    ARS COMBINATORIA, 2006, 81 : 161 - 173
  • [30] A Refinement of Theorems on Vertex-Disjoint Chorded Cycles
    Molla, Theodore
    Santana, Michael
    Yeager, Elyse
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 181 - 201