On the diameter of partition polytopes and vertex-disjoint cycle cover

被引:0
|
作者
Steffen Borgwardt
机构
[1] Technische Universität München,Fakultät für Mathematik
来源
Mathematical Programming | 2013年 / 141卷
关键词
Diameter; Partitioning; Transportation polytope; Cycle cover; Combinatorial optimization; Mathematical programming; 90C08; 90C27; 90C35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the combinatorial diameter of partition polytopes, a special class of transportation polytopes. They are associated to partitions of a set X = {x1, . . . , xn} of items into clusters C1, . . . , Ck of prescribed sizes κ1 ≥ · · · ≥ κk. We derive upper bounds on the diameter in the form of κ1 + κ2, n − κ1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor \frac{n}{2} \rfloor}$$\end{document}. This is a direct generalization of the diameter-2 result for the Birkhoff polytope. The bounds are established using a constructive, graph-theoretical approach where we show that special sets of vertices in graphs that decompose into cycles can be covered by a set of vertex-disjoint cycles. Further, we give exact diameters for partition polytopes with k = 2 or k = 3 and prove that, for all k ≥ 4 and all κ1, κ2, there are cluster sizes κ3, . . . , κk such that the diameter of the corresponding partition polytope is at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil \frac{4}{3} \kappa_2 \rceil}$$\end{document}. Finally, we provide an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${O(n(\kappa_1 + \kappa_2(\sqrt{k} - 1)))}$$\end{document} algorithm for an edge-walk connecting two given vertices of a partition polytope that also adheres to our diameter bounds.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [1] On the diameter of partition polytopes and vertex-disjoint cycle cover
    Borgwardt, Steffen
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 1 - 20
  • [2] Maximizing Expectation on Vertex-Disjoint Cycle Packing
    Pedroso, Joao Pedro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT II, 2014, 8580 : 32 - 46
  • [3] A note on vertex-disjoint cycles
    Verstraëte, J
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 97 - 102
  • [4] Vertex-Disjoint Quadrilaterals in Multigraphs
    Yunshu Gao
    Qingsong Zou
    Liyan Ma
    Graphs and Combinatorics, 2017, 33 : 901 - 912
  • [5] Vertex-Disjoint Quadrilaterals in Multigraphs
    Gao, Yunshu
    Zou, Qingsong
    Ma, Liyan
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 901 - 912
  • [6] Vertex-disjoint paths in graphs
    Egawa, Y
    Ota, K
    ARS COMBINATORIA, 2001, 61 : 23 - 31
  • [7] Vertex-disjoint quadrilaterals in graphs
    Wang, H
    DISCRETE MATHEMATICS, 2004, 288 (1-3) : 149 - 166
  • [8] The vertex-disjoint triangles problem
    Guruswami, V
    Rangan, CP
    Chang, MS
    Chang, GJ
    Wong, CK
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 26 - 37
  • [9] Vertex-disjoint claws in graphs
    Egawa, Y
    Ota, K
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 225 - 246
  • [10] Graphs with many Vertex-Disjoint Cycles
    Rautenbach, Dieter
    Regen, Friedrich
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2012, 14 (02): : 75 - 82