Universal character and q-difference Painlevé equations

被引:0
|
作者
Teruhisa Tsuda
机构
[1] Kobe University,Department of Mathematics
[2] Kyushu University,Faculty of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
34M55; 37K10; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of q-difference lattice equations satisfied by the universal character, and call it the latticeq-UC hierarchy. We regard it as generalizing both q-KP and q-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the q-difference Painlevé equations of types \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A_{2g+1}+A_1)^{(1)}(g \geq 1)}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_5^{(1)}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} . As its consequence, a class of algebraic solutions of the q-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} via the framework of τ based on the geometry of certain rational surfaces.
引用
收藏
页码:395 / 415
页数:20
相关论文
共 50 条
  • [41] Functional relations for solutions of q-difference equations
    Thomas Dreyfus
    Charlotte Hardouin
    Julien Roques
    Mathematische Zeitschrift, 2021, 298 : 1751 - 1791
  • [42] Linear q-difference equations depending on a parameter
    Abramov, S. A.
    Ryabenko, A. A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 : 65 - 77
  • [43] LOCAL ANALYTIC CLASSIFICATION OF q-DIFFERENCE EQUATIONS
    Ramis, Jean-Pierre
    Sauloy, Jacques
    Zhang, Changgui
    ASTERISQUE, 2013, (355) : 1 - +
  • [44] Functional relations for solutions of q-difference equations
    Dreyfus, Thomas
    Hardouin, Charlotte
    Roques, Julien
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1751 - 1791
  • [45] ISOMONODROMIC DEFORMATION OF q-DIFFERENCE EQUATIONS AND CONFLUENCE
    Dreyfus, Thomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 1109 - 1120
  • [46] Existence of solutions for fractional q-difference equations
    Ulke, Oykum
    Topal, Fatma Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 573 - 591
  • [47] MODULAR UNITS AND THE q-DIFFERENCE EQUATIONS OF SELBERG
    Folsom, Amanda
    MATHEMATICAL RESEARCH LETTERS, 2010, 17 (02) : 283 - 299
  • [48] Properties on solutions of some q-difference equations
    Bao Qin Chen
    Zong Xuan Chen
    Sheng Li
    Acta Mathematica Sinica, English Series, 2010, 26 : 1877 - 1886
  • [49] On the solutions of a nonlinear system of q-difference equations
    Turan, Nihan
    Basarir, Metin
    Sahin, Aynur
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [50] CONFLUENCE OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE EQUATIONS
    Dreyfus, Thomas
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (02) : 431 - 507