Universal character and q-difference Painlevé equations

被引:0
|
作者
Teruhisa Tsuda
机构
[1] Kobe University,Department of Mathematics
[2] Kyushu University,Faculty of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
34M55; 37K10; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of q-difference lattice equations satisfied by the universal character, and call it the latticeq-UC hierarchy. We regard it as generalizing both q-KP and q-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the q-difference Painlevé equations of types \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A_{2g+1}+A_1)^{(1)}(g \geq 1)}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_5^{(1)}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} . As its consequence, a class of algebraic solutions of the q-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} via the framework of τ based on the geometry of certain rational surfaces.
引用
收藏
页码:395 / 415
页数:20
相关论文
共 50 条
  • [31] Improved algorithms for solving difference and q-difference equations
    Khmel'nov, DE
    PROGRAMMING AND COMPUTER SOFTWARE, 2000, 26 (02) : 107 - 115
  • [32] q-regular variation and q-difference equations
    Rehak, Pavel
    Vitovec, Jiri
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (49)
  • [33] q-hypergeometric solutions of q-difference equations
    Abramov, SA
    Paule, P
    Petkovsek, M
    DISCRETE MATHEMATICS, 1998, 180 (1-3) : 3 - 22
  • [34] Ultrametric q-difference equations and q-Wronskian
    Belaidi, Benharrat
    Bouabdelli, Rabab
    Boutabaa, Abdelbaki
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (02): : 137 - 145
  • [35] The general theory of linear q-difference equations
    Carmichael, RD
    AMERICAN JOURNAL OF MATHEMATICS, 1912, 34 : 147 - 168
  • [36] q-difference equations in ultrametric fields.
    Boudjrida, Najet
    Boutabaa, Abdelbaki
    Medjerab, Samia
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2011, 551 : 39 - 49
  • [37] Meromorphic solutions of linear q-difference equations
    Lastra, Alberto
    Remy, Pascal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)
  • [38] Properties on Solutions of Some q-Difference Equations
    Chen, Bao Qin
    Chen, Zong Xuan
    Li, Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1877 - 1886
  • [39] Galois theory of fuchsian q-difference equations
    Sauloy, J
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (06): : 925 - 968
  • [40] MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
    Chen, BaoQin
    Chen, ZongXuan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1303 - 1314