Universal character and q-difference Painlevé equations

被引:0
|
作者
Teruhisa Tsuda
机构
[1] Kobe University,Department of Mathematics
[2] Kyushu University,Faculty of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
34M55; 37K10; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of q-difference lattice equations satisfied by the universal character, and call it the latticeq-UC hierarchy. We regard it as generalizing both q-KP and q-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the q-difference Painlevé equations of types \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A_{2g+1}+A_1)^{(1)}(g \geq 1)}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_5^{(1)}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} . As its consequence, a class of algebraic solutions of the q-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} via the framework of τ based on the geometry of certain rational surfaces.
引用
收藏
页码:395 / 415
页数:20
相关论文
共 50 条
  • [21] Differential-difference equations reducible to difference and q-difference equations
    Romanenko, EY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) : 615 - 626
  • [22] QUANTUM SYMMETRIES OF Q-DIFFERENCE EQUATIONS
    FLOREANINI, R
    VINET, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (06) : 3134 - 3156
  • [23] Oscillation of a family of q-difference equations
    Baoguo, Jia
    Erbe, Lynn
    Peterson, Allan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 871 - 875
  • [24] UNIFICATION OF INTEGRABLE q-DIFFERENCE EQUATIONS
    Silindir, Burcu
    Soyoglu, Duygu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [25] On some ultrametric q-difference equations
    Boudjerida, Nadjet
    Boutabaa, Abdelbaki
    Medjerab, Samia
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 177 - 188
  • [26] Euler characteristics and q-difference equations
    Roques, Julien
    Sauloy, Jacques
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 129 - 154
  • [27] Some results on q-difference equations
    Junchao Zhang
    Gang Wang
    Junjie Chen
    Rongxiang Zhao
    Advances in Difference Equations, 2012
  • [28] On classical irregular q-difference equations
    Roques, Julien
    COMPOSITIO MATHEMATICA, 2012, 148 (05) : 1624 - 1644
  • [29] Some results on q-difference equations
    Zhang, Junchao
    Wang, Gang
    Chen, Junjie
    Zhao, Rongxiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [30] On a q-Difference Painlevé III Equation: II. Rational Solutions
    Kenji Kajiwara
    Journal of Nonlinear Mathematical Physics, 2003, 10 : 282 - 303