Universal character and q-difference Painlevé equations

被引:0
|
作者
Teruhisa Tsuda
机构
[1] Kobe University,Department of Mathematics
[2] Kyushu University,Faculty of Mathematics
来源
Mathematische Annalen | 2009年 / 345卷
关键词
34M55; 37K10; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of q-difference lattice equations satisfied by the universal character, and call it the latticeq-UC hierarchy. We regard it as generalizing both q-KP and q-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the q-difference Painlevé equations of types \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A_{2g+1}+A_1)^{(1)}(g \geq 1)}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_5^{(1)}}$$\end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} . As its consequence, a class of algebraic solutions of the q-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_6^{(1)}}$$\end{document} via the framework of τ based on the geometry of certain rational surfaces.
引用
收藏
页码:395 / 415
页数:20
相关论文
共 50 条