Universal character and q-difference Painlevé equations
被引:0
|
作者:
Teruhisa Tsuda
论文数: 0引用数: 0
h-index: 0
机构:Kobe University,Department of Mathematics
Teruhisa Tsuda
机构:
[1] Kobe University,Department of Mathematics
[2] Kyushu University,Faculty of Mathematics
来源:
Mathematische Annalen
|
2009年
/
345卷
关键词:
34M55;
37K10;
39A13;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The universal character is a polynomial attached to a pair of partitions and is a generalization of the Schur polynomial. In this paper, we introduce an integrable system of q-difference lattice equations satisfied by the universal character, and call it the latticeq-UC hierarchy. We regard it as generalizing both q-KP and q-UC hierarchies. Suitable similarity and periodic reductions of the hierarchy yield the q-difference Painlevé equations of types \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(A_{2g+1}+A_1)^{(1)}(g \geq 1)}$$\end{document} , \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${D_5^{(1)}}$$\end{document} , and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${E_6^{(1)}}$$\end{document} . As its consequence, a class of algebraic solutions of the q-Painlevé equations is rapidly obtained by means of the universal character. In particular, we demonstrate explicitly the reduction procedure for the case of type \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${E_6^{(1)}}$$\end{document} via the framework of τ based on the geometry of certain rational surfaces.
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Univ Eastern Finland, Dept Phys & Math, Joensuu 80101, FinlandSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China