Uniaxial versus biaxial character of nematic equilibria in three dimensions

被引:0
|
作者
Duvan Henao
Apala Majumdar
Adriano Pisante
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
[3] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Q}$$\end{document}-tensors cannot be stable critical points of the LdG energy in this limit.
引用
收藏
相关论文
共 50 条
  • [41] Revealing the uniaxial to biaxial nematic liquid crystal phase transition via distinctive electroconvection
    Xiang, Ying
    Goodby, J. W.
    Goertz, V.
    Gleeson, H. F.
    APPLIED PHYSICS LETTERS, 2009, 94 (19)
  • [43] Temperature dependence of refractive indices near uniaxial-biaxial nematic phase transition
    Santoro, P. A.
    Sampaio, A. R.
    da Luz, H. L. F.
    Palangana, A. J.
    PHYSICS LETTERS A, 2006, 353 (06) : 512 - 515
  • [44] LIGHT-SCATTERING AT THE UNIAXIAL-BIAXIAL TRANSITION IN NEMATIC LIQUID-CRYSTALS
    JACOBSEN, EA
    SWIFT, J
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1982, 87 (1-2): : 29 - 39
  • [45] Nonuniversal critical behavior at the uniaxial-biaxial nematic phase transition in a lyotropic mixture
    Thieghi, LT
    Shibli, SM
    Neto, AMF
    Dmitriev, VP
    Toledano, P
    PHYSICAL REVIEW LETTERS, 1998, 80 (14) : 3093 - 3096
  • [46] Investigation of uniaxial and biaxial lyotropic nematic phase transitions by means of digital image processing
    Sampaio, AR
    Palangana, AJ
    Viscovini, RC
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2004, 408 : 45 - 51
  • [47] Uniaxial and biaxial nematic phases of banana-shaped molecules and the effects of an external field
    Matsuyama, Akihiko
    Arikawa, Saki
    Wada, Moto
    Fukutomi, Nanako
    LIQUID CRYSTALS, 2019, 46 (11) : 1672 - 1685
  • [48] LOW-FREQUENCY GREEN FUNCTIONS ASYMPTOTICS IN UNIAXIAL AND BIAXIAL NEMATIC LIQUID CRYSTALS
    Matskevych, V. T.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, (01): : 225 - 229
  • [49] CRITICAL-BEHAVIOR OF UNIAXIAL BIAXIAL NEMATIC PHASE-TRANSITIONS IN AMPHIPHILIC SYSTEMS
    BOONBRAHM, P
    SAUPE, A
    JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04): : 2076 - 2081
  • [50] Homogeneous and homeotropic alignment of bent-core uniaxial and biaxial nematic liquid crystals
    Yoon, HyungGuen
    Kang, Shin-Woong
    Lehmann, Matthias
    Park, Jung Ok
    Srinivasarao, Mohan
    Kumar, Satyendra
    SOFT MATTER, 2011, 7 (19) : 8770 - 8775