Uniaxial versus biaxial character of nematic equilibria in three dimensions

被引:0
|
作者
Duvan Henao
Apala Majumdar
Adriano Pisante
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
[3] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Q}$$\end{document}-tensors cannot be stable critical points of the LdG energy in this limit.
引用
收藏
相关论文
共 50 条
  • [31] THE SYMMETRY OF THE NEMATIC PHASE OF A THERMOTROPIC LIQUID-CRYSTAL - BIAXIAL OR UNIAXIAL
    FAN, SM
    FLETCHER, ID
    GUNDOGAN, B
    HEATON, NJ
    KOTHE, G
    LUCKHURST, GR
    PRAEFCKE, K
    CHEMICAL PHYSICS LETTERS, 1993, 204 (5-6) : 517 - 523
  • [32] Optical measurements of orientational order in uniaxial and biaxial nematic liquid crystals
    Gleeson, H. F.
    Southern, C. D.
    Brimicombe, P. D.
    Goodby, J. W.
    Gortz, V.
    LIQUID CRYSTALS, 2010, 37 (6-7) : 949 - 959
  • [33] UNIAXIAL-BIAXIAL PHASE-TRANSITION IN LYOTROPIC NEMATIC SOLUTIONS - LOCAL BIAXIALITY IN THE UNIAXIAL PHASE
    HENDRIKX, Y
    CHARVOLIN, J
    RAWISO, M
    PHYSICAL REVIEW B, 1986, 33 (05): : 3534 - 3537
  • [34] Uniaxial and biaxial nematic phases in binary mixtures of banana-shaped molecules
    Miyagi, Kodai
    Matsuyama, Akihiko
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 757 (01) : 13 - 21
  • [35] LIGHT-SCATTERING BY UNIAXIAL AND BIAXIAL FLUCTUATIONS IN A NEMATIC LIQUID-CRYSTAL
    SIDOROV, VI
    ZAREMBA, VG
    UKRAINSKII FIZICHESKII ZHURNAL, 1985, 30 (12): : 1816 - 1818
  • [36] Improved analysis of the Landau theory of the uniaxial-biaxial nematic phase transition
    Mukherjee, PK
    LIQUID CRYSTALS, 1998, 24 (04) : 519 - 523
  • [37] Optical and structural anisotropy of a uniaxial nematic consisting of biaxial molecules with internal rotation
    E. M. Aver’yanov
    Optics and Spectroscopy, 2002, 93 : 870 - 878
  • [38] Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens
    Prasad, Veena
    Kang, Shin-Woong
    Suresh, K.A.
    Joshi, Leela
    Wang, Qingbing
    Kumar, Satyendra
    Journal of the American Chemical Society, 2005, 127 (49): : 17224 - 17227
  • [39] Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens
    Prasad, V
    Kang, SW
    Suresh, KA
    Joshi, L
    Wang, QB
    Kumar, S
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (49) : 17224 - 17227
  • [40] Optical and structural anisotropy of a uniaxial nematic consisting of biaxial molecules with internal rotation
    Aver'yanov, EM
    OPTICS AND SPECTROSCOPY, 2002, 93 (06) : 870 - 878