Uniaxial versus biaxial character of nematic equilibria in three dimensions

被引:0
|
作者
Duvan Henao
Apala Majumdar
Adriano Pisante
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
[3] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Q}$$\end{document}-tensors cannot be stable critical points of the LdG energy in this limit.
引用
收藏
相关论文
共 50 条
  • [21] BIAXIAL NEMATIC PHASES IN TRIDISPERSE MIXTURES OF HARD UNIAXIAL PARTICLES
    Sokolova, E. P.
    Vlasov, A. Yu.
    LIQUID CRYSTALS AND THEIR APPLICATION, 2014, 14 (04): : 49 - 58
  • [22] Refractive index measurements in uniaxial and biaxial lyotropic nematic phases
    Braga, W. S.
    Santos, O. R.
    Luders, D. D.
    Kimura, N. M.
    Sampaio, A. R.
    Simoes, M.
    Palangana, A. J.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 213 : 186 - 190
  • [23] Study of optical conoscopy in uniaxial and biaxial nematic lyotropic phases
    Santos, O. R.
    Braga, W. S.
    Luders, D. D.
    Kimura, N. M.
    Simoes, M.
    Palangana, A. J.
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 197 : 120 - 123
  • [24] LANDAU THEORY OF BIAXIAL AND UNIAXIAL NEMATIC LIQUID-CRYSTALS
    ALLENDER, DW
    LEE, MA
    HAFIZ, N
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1985, 124 (1-4): : 45 - 52
  • [25] CRITICAL PROPERTIES OF THE UNIAXIAL BIAXIAL TRANSITION IN MICELLAR NEMATIC PHASES
    MELNIK, G
    PHOTINOS, P
    SAUPE, A
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (06): : 4046 - 4051
  • [26] Critical behavior of uniaxial-biaxial nematic phase transition
    Mukherjee, PK
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (07): : 2941 - 2946
  • [27] DISCLINATION SYMMETRY IN UNIAXIAL AND BIAXIAL NEMATIC LIQUID-CRYSTALS
    BALINSKY, AA
    VOLOVIK, GE
    KATS, EI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1984, 87 (04): : 1305 - 1313
  • [28] Theory of uniaxial and biaxial nematic phases in bent-core systems
    Mettout, B
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [29] 52Cr spinor condensate:: A biaxial or uniaxial spin nematic
    Diener, Roberto B.
    Ho, Tin-Lun
    PHYSICAL REVIEW LETTERS, 2006, 96 (19)
  • [30] POLARIZATION FEATURES OF ACOUSTIC SPECTRA IN UNIAXIAL AND BIAXIAL NEMATIC LIQUID CRYSTALS
    Kovalevsky, M. Y.
    Logvinova, L. V.
    Matskevych, V. T.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, (01): : 221 - 224