Uniaxial versus biaxial character of nematic equilibria in three dimensions

被引:0
|
作者
Duvan Henao
Apala Majumdar
Adriano Pisante
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Sapienza Università di Roma,Dipartimento di Matematica “G. Castelnuovo”
[3] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study global minimizers of the Landau–de Gennes (LdG) energy functional for nematic liquid crystals, on arbitrary three-dimensional simply connected geometries with topologically non-trivial and physically relevant Dirichlet boundary conditions. Our results are specific to an asymptotic limit coined in terms of a dimensionless temperature and material-dependent parameter, t and some constraints on the material parameters, and we work in the t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document} limit that captures features of the widely used Lyuksyutov constraint (Kralj and Virga in J Phys A 34:829–838, 2001). We prove (i) that (re-scaled) global LdG minimizers converge uniformly to a (minimizing) limiting harmonic map, away from the singular set of the limiting map; (ii) we have points of maximal biaxiality and uniaxiality near each singular point of the limiting map; (iii) estimates for the size of “strongly biaxial” regions in terms of the parameter t. We further show that global LdG minimizers in the restricted class of uniaxial Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Q}$$\end{document}-tensors cannot be stable critical points of the LdG energy in this limit.
引用
收藏
相关论文
共 50 条
  • [1] Uniaxial versus biaxial character of nematic equilibria in three dimensions
    Henao, Duvan
    Majumdar, Apala
    Pisante, Adriano
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [2] PHASE EQUILIBRIA IN NEMATIC MIXTURES OF HARD UNIAXIAL AND BIAXIAL PARTICLES
    Sokolova, E. P.
    LIQUID CRYSTALS AND THEIR APPLICATION, 2011, (02): : 7 - 17
  • [3] Landau theory for uniaxial nematic, biaxial nematic, uniaxial smectic-A, and biaxial smectic-A phases
    Izzo, Dora
    de Oliveira, Mario J.
    LIQUID CRYSTALS, 2016, 43 (09) : 1230 - 1236
  • [4] Uniaxial rebound at the nematic biaxial transition
    Bisi, Fulvio
    Romano, Silvano
    Virga, Epifanio G.
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [5] Uniaxial and biaxial nematic liquid crystals
    Dingemans, T. J.
    Madsen, L. A.
    Zafiropoulos, N. A.
    Lin, Wenbin
    Samulski, E. T.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1847): : 2681 - 2696
  • [6] Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures
    Wensink, HH
    Vroege, GJ
    Lekkerkerker, HNW
    PHYSICAL REVIEW E, 2002, 66 (04): : 13 - 041704
  • [7] MACROSCOPIC BEHAVIOR OF A BIAXIAL MIXTURE OF UNIAXIAL NEMATICS VERSUS HYDRODYNAMICS OF A BIAXIAL NEMATIC LIQUID-CRYSTAL
    PLEINER, H
    BRAND, HR
    JOURNAL DE PHYSIQUE, 1985, 46 (04): : 615 - 620
  • [8] UNIAXIAL NEMATIC PHASE IN FLUIDS OF BIAXIAL PARTICLES
    BERGERSEN, B
    PALFFYMUHORAY, P
    DUNMUR, DA
    LIQUID CRYSTALS, 1988, 3 (03) : 347 - 352
  • [9] Uniaxial and biaxial soft deformations of nematic elastomers
    Warner, M
    Kutter, S
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [10] Optical characterization of a biaxial nematic between uniaxial nematic lyotropic phases
    Santos, O. R.
    Braga, W. S.
    Luders, D. D.
    Sampaio, A. R.
    Kimura, N. M.
    Simoes, M.
    Palangana, A. J.
    PHASE TRANSITIONS, 2021, 94 (6-8) : 546 - 555