Inequalities for trigonometric sums and applications

被引:0
|
作者
Horst Alzer
Man Kam Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Trigonometric sums; Inequalities; Absolutely monotonic; 26A48; 26D05; 26D15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
We present various new inequalities for cosine and sine sums. Among others, we prove that 0.10≤∑k=0n(a)2k(2k)!cos((2k+1)x)2k+1(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (a)_{2k}}{(2k)!} \frac{\cos ((2k+1)x)}{2k+1} \quad {(a\in \mathbb {R})} \end{aligned}$$\end{document}is valid for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi /2]$$\end{document} if and only if a∈[-2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [-2,1]$$\end{document}, and that 0.20≤∑k=0n(b)2k(2k)!sin((2k+1)x)2k+1(b∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (b)_{2k}}{(2k)!} \frac{\sin ((2k+1)x)}{2k+1} \quad {(b\in \mathbb {R})} \end{aligned}$$\end{document}holds for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi ]$$\end{document} if and only if b∈[-3,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in [-3,2]$$\end{document}. Here, (a)n=∏j=0n-1(a+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a)_n=\prod _{j=0}^{n-1} (a+j)$$\end{document} denotes the Pochhammer symbol. Inequality (0.1) with a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} is due to Gasper. We use it to obtain an integral inequality in the complex domain and to provide a one-parameter class of absolutely monotonic functions. An application of (0.2) leads to a new extension of the classical Fejér–Jackson inequality.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 50 条