Inequalities for trigonometric sums and applications

被引:0
|
作者
Horst Alzer
Man Kam Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Trigonometric sums; Inequalities; Absolutely monotonic; 26A48; 26D05; 26D15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
We present various new inequalities for cosine and sine sums. Among others, we prove that 0.10≤∑k=0n(a)2k(2k)!cos((2k+1)x)2k+1(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (a)_{2k}}{(2k)!} \frac{\cos ((2k+1)x)}{2k+1} \quad {(a\in \mathbb {R})} \end{aligned}$$\end{document}is valid for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi /2]$$\end{document} if and only if a∈[-2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [-2,1]$$\end{document}, and that 0.20≤∑k=0n(b)2k(2k)!sin((2k+1)x)2k+1(b∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (b)_{2k}}{(2k)!} \frac{\sin ((2k+1)x)}{2k+1} \quad {(b\in \mathbb {R})} \end{aligned}$$\end{document}holds for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi ]$$\end{document} if and only if b∈[-3,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in [-3,2]$$\end{document}. Here, (a)n=∏j=0n-1(a+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a)_n=\prod _{j=0}^{n-1} (a+j)$$\end{document} denotes the Pochhammer symbol. Inequality (0.1) with a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} is due to Gasper. We use it to obtain an integral inequality in the complex domain and to provide a one-parameter class of absolutely monotonic functions. An application of (0.2) leads to a new extension of the classical Fejér–Jackson inequality.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 50 条
  • [21] Local inequalities for Sidon sums and their applications
    Fan, AH
    Zhang, YP
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (02) : 305 - 316
  • [22] INEQUALITIES FOR WEIGHTED SUMS OF POWERS AND THEIR APPLICATIONS
    Neuman, Edward
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 995 - 1005
  • [23] LOCAL INEQUALITIES FOR SIDON SUMS AND THEIR APPLICATIONS
    范爱华
    章逸平
    Acta Mathematica Scientia, 2005, (02) : 305 - 316
  • [24] Some Difference Inequalities for Iterated Sums with Applications
    Wang, Wu-Sheng
    Wu, Shanhe
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] MULTIPLE TRIGONOMETRIC SUMS
    ARKHIPOV, GI
    CHUBARIKOV, VN
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (05): : 1017 - 1019
  • [26] On zeros of trigonometric sums
    Karatsuba, AA
    DOKLADY MATHEMATICS, 2002, 66 (03) : 309 - 310
  • [27] A remark on trigonometric sums
    Katai, I.
    ACTA MATHEMATICA HUNGARICA, 2006, 112 (03) : 221 - 225
  • [28] Arithmetic Trigonometric Sums
    Ionascu, Eugen J.
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (08): : 756 - 756
  • [29] A remark on trigonometric sums
    Imre Kátai
    Acta Mathematica Hungarica, 2006, 112 : 221 - 225
  • [30] A remark on trigonometric sums
    Lao, Huixue
    ACTA ARITHMETICA, 2008, 134 (02) : 127 - 131