Inequalities for trigonometric sums and applications

被引:0
|
作者
Horst Alzer
Man Kam Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Trigonometric sums; Inequalities; Absolutely monotonic; 26A48; 26D05; 26D15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
We present various new inequalities for cosine and sine sums. Among others, we prove that 0.10≤∑k=0n(a)2k(2k)!cos((2k+1)x)2k+1(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (a)_{2k}}{(2k)!} \frac{\cos ((2k+1)x)}{2k+1} \quad {(a\in \mathbb {R})} \end{aligned}$$\end{document}is valid for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi /2]$$\end{document} if and only if a∈[-2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [-2,1]$$\end{document}, and that 0.20≤∑k=0n(b)2k(2k)!sin((2k+1)x)2k+1(b∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (b)_{2k}}{(2k)!} \frac{\sin ((2k+1)x)}{2k+1} \quad {(b\in \mathbb {R})} \end{aligned}$$\end{document}holds for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi ]$$\end{document} if and only if b∈[-3,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in [-3,2]$$\end{document}. Here, (a)n=∏j=0n-1(a+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a)_n=\prod _{j=0}^{n-1} (a+j)$$\end{document} denotes the Pochhammer symbol. Inequality (0.1) with a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} is due to Gasper. We use it to obtain an integral inequality in the complex domain and to provide a one-parameter class of absolutely monotonic functions. An application of (0.2) leads to a new extension of the classical Fejér–Jackson inequality.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 50 条
  • [31] ESTIMATIONS OF TRIGONOMETRIC SUMS
    LAUMON, G
    ASTERISQUE, 1981, (82-8) : 221 - 258
  • [32] UNEQUAL TRIGONOMETRIC SUMS
    KLAMKIN, MS
    KIMURA, N
    SEKIGUCHI, T
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (08): : 601 - 601
  • [33] Orthogonal trigonometric sums
    Jackson, D
    ANNALS OF MATHEMATICS, 1933, 34 : 799 - 814
  • [34] MULTIPLE TRIGONOMETRIC SUMS
    ARKHIPOV, GI
    DOKLADY AKADEMII NAUK SSSR, 1974, 219 (05): : 1036 - 1037
  • [35] Nonnegative trigonometric sums
    McDonald, JN
    Siefker, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (02) : 580 - 586
  • [36] On a property of the trigonometric sums
    Sokolov, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1934, 2 : 439 - 443
  • [37] PROBLEM OF TRIGONOMETRIC SUMS
    TANDORI, K
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2): : 207 - 218
  • [38] MULTIPLE TRIGONOMETRIC SUMS
    ARHIPOV, GI
    CUBARIKOV, VN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1976, 10 (01): : 200 - 210
  • [39] On the zeros of the trigonometric sums
    Karatsuba, A.A.
    Doklady Akademii Nauk, 2002, 387 (01) : 11 - 13
  • [40] ESTIMATION OF TRIGONOMETRIC SUMS
    LEITMANN, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 317 : 209 - 219