Inequalities for trigonometric sums and applications

被引:0
|
作者
Horst Alzer
Man Kam Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Trigonometric sums; Inequalities; Absolutely monotonic; 26A48; 26D05; 26D15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
We present various new inequalities for cosine and sine sums. Among others, we prove that 0.10≤∑k=0n(a)2k(2k)!cos((2k+1)x)2k+1(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (a)_{2k}}{(2k)!} \frac{\cos ((2k+1)x)}{2k+1} \quad {(a\in \mathbb {R})} \end{aligned}$$\end{document}is valid for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi /2]$$\end{document} if and only if a∈[-2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [-2,1]$$\end{document}, and that 0.20≤∑k=0n(b)2k(2k)!sin((2k+1)x)2k+1(b∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (b)_{2k}}{(2k)!} \frac{\sin ((2k+1)x)}{2k+1} \quad {(b\in \mathbb {R})} \end{aligned}$$\end{document}holds for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi ]$$\end{document} if and only if b∈[-3,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in [-3,2]$$\end{document}. Here, (a)n=∏j=0n-1(a+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a)_n=\prod _{j=0}^{n-1} (a+j)$$\end{document} denotes the Pochhammer symbol. Inequality (0.1) with a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} is due to Gasper. We use it to obtain an integral inequality in the complex domain and to provide a one-parameter class of absolutely monotonic functions. An application of (0.2) leads to a new extension of the classical Fejér–Jackson inequality.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 50 条
  • [1] Inequalities for trigonometric sums and applications
    Alzer, Horst
    Kwong, Man Kam
    AEQUATIONES MATHEMATICAE, 2020, 94 (02) : 235 - 251
  • [2] Inequalities for trigonometric sums
    Alzer, Horst
    Kwong, Man Kam
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1801 - 1817
  • [3] Inequalities for Alternating Trigonometric Sums
    Horst Alzer
    Xiuping Liu
    Xiquan Shi
    Results in Mathematics, 2013, 63 : 1215 - 1223
  • [4] Inequalities for Alternating Trigonometric Sums
    Alzer, Horst
    Liu, Xiuping
    Shi, Xiquan
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1215 - 1223
  • [5] On inequalities for alternating trigonometric sums
    Alzer, Horst
    Kwong, Man Kam
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (1-2): : 205 - 216
  • [6] Sharp inequalities for trigonometric sums
    Alzer, H
    Koumandos, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 139 - 152
  • [7] INEQUALITIES FOR TRIGONOMETRIC SUMS IN TWO VARIABLES
    SZABO, V. E. S.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (03): : 839 - 850
  • [8] Positive trigonometric sums and applications
    Koumandos, Stamatis
    ANNALES MATHEMATICAE ET INFORMATICAE, 2006, 33 : 77 - 91
  • [9] MULTIPLE TRIGONOMETRIC SUMS AND THEIR APPLICATIONS
    ARHIPOV, GI
    KARACUBA, AA
    CUBARIKOV, VN
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 17 (01): : 1 - 54
  • [10] Sharp inequalities for trigonometric sums in two variables
    Alzer, H
    Koumandos, S
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 887 - 907