Scalable and efficient multi-label classification for evolving data streams

被引:5
|
作者
Jesse Read
Albert Bifet
Geoff Holmes
Bernhard Pfahringer
机构
[1] University of Waikato,Computer Science Department
来源
Machine Learning | 2012年 / 88卷
关键词
Multi-label classification; Data streams classification;
D O I
暂无
中图分类号
学科分类号
摘要
Many challenging real world problems involve multi-label data streams. Efficient methods exist for multi-label classification in non-streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as classifiers must be able to deal with huge numbers of examples and to adapt to change using limited time and memory while being ready to predict at any point.
引用
收藏
页码:243 / 272
页数:29
相关论文
共 50 条
  • [41] The use of data-derived label hierarchies in multi-label classification
    Madjarov, Gjorgji
    Gjorgjevikj, Dejan
    Dimitrovski, Ivica
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2016, 47 (01) : 57 - 90
  • [42] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [43] Dual Layer Voting Method for Efficient Multi-label Classification
    Madjarov, Gjorgji
    Gjorgjevikj, Dejan
    Dzeroski, Saso
    PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011, 2011, 6669 : 232 - 239
  • [44] Improving Children Diagnostics by Efficient Multi-label Classification Method
    Glinka, Kinga
    Wosiak, Agnieszka
    Zakrzewska, Danuta
    INFORMATION TECHNOLOGIES IN MEDICINE, ITIB 2016, VOL 1, 2016, 471 : 253 - 266
  • [45] Efficient Multi-label Classification using Attribute and Instance Selection
    Sane, Shirish S.
    Tidake, Vaishali S.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (14): : 221 - 226
  • [46] RETRACTION: Incremental deep forest for multi-label data streams learning
    Liang, Shunpan
    Pan, Weiwei
    You, Dianlong
    Liu, Ze
    Yin, Ling
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [47] An Efficient Multi-Label Classification System Using Ensemble of Classifiers
    Chandran, Shilpa A.
    Panicker, Janu R.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 1133 - 1136
  • [48] An Efficient Framework by Topic Model for Multi-label Text Classification
    Sun, Wei
    Ran, Xiangying
    Luo, Xiangyang
    Wang, Chongjun
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [49] Efficient Robust Optimal Transport with Application to Multi-Label Classification
    Jawanpuria, Pratik
    Satyadev, N. T., V
    Mishra, Bamdev
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1490 - 1495
  • [50] Combining Instance and Feature neighbors for Efficient Multi-label Classification
    Feremans, Len
    Cule, Boris
    Vens, Celine
    Goethals, Bart
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 109 - 118