Scalable and efficient multi-label classification for evolving data streams

被引:5
|
作者
Jesse Read
Albert Bifet
Geoff Holmes
Bernhard Pfahringer
机构
[1] University of Waikato,Computer Science Department
来源
Machine Learning | 2012年 / 88卷
关键词
Multi-label classification; Data streams classification;
D O I
暂无
中图分类号
学科分类号
摘要
Many challenging real world problems involve multi-label data streams. Efficient methods exist for multi-label classification in non-streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as classifiers must be able to deal with huge numbers of examples and to adapt to change using limited time and memory while being ready to predict at any point.
引用
收藏
页码:243 / 272
页数:29
相关论文
共 50 条
  • [31] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [32] Evolving multi-label fuzzy classifier
    Lughofer, Edwin
    INFORMATION SCIENCES, 2022, 597 : 1 - 23
  • [33] Parallelization of Multi-label classification for large data sets
    Biswas, Shinjini
    Devi, V. Susheela
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 2005 - 2010
  • [34] A Combined Approach for Multi-Label Text Data Classification
    Strimaitis, Rokas
    Stefanovic, Pavel
    Ramanauskaite, Simona
    Slotkiene, Asta
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [35] Active Learning in Multi-label Classification of Bioacoustic Data
    Kath, Hannes
    Gouvea, Thiago S.
    Sonntag, Daniel
    KI 2024: ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2024, 2024, 14992 : 114 - 127
  • [36] Data scarcity, robustness and extreme multi-label classification
    Rohit Babbar
    Bernhard Schölkopf
    Machine Learning, 2019, 108 : 1329 - 1351
  • [37] Limiting Data Exposure in Multi-Label Classification Processes
    Anciaux, Nicolas
    Boutara, Danae
    Nguyen, Benjamin
    Vazirgiannis, Michalis
    FUNDAMENTA INFORMATICAE, 2015, 137 (02) : 219 - 236
  • [38] Data scarcity, robustness and extreme multi-label classification
    Babbar, Rohit
    Schoelkopf, Bernhard
    MACHINE LEARNING, 2019, 108 (8-9) : 1329 - 1351
  • [39] A virtual multi-label approach to imbalanced data classification
    Chou, Elizabeth P.
    Yang, Shan-Ping
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (03) : 1461 - 1471
  • [40] The use of data-derived label hierarchies in multi-label classification
    Gjorgji Madjarov
    Dejan Gjorgjevikj
    Ivica Dimitrovski
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2016, 47 : 57 - 90