Scalable and efficient multi-label classification for evolving data streams

被引:5
|
作者
Jesse Read
Albert Bifet
Geoff Holmes
Bernhard Pfahringer
机构
[1] University of Waikato,Computer Science Department
来源
Machine Learning | 2012年 / 88卷
关键词
Multi-label classification; Data streams classification;
D O I
暂无
中图分类号
学科分类号
摘要
Many challenging real world problems involve multi-label data streams. Efficient methods exist for multi-label classification in non-streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as classifiers must be able to deal with huge numbers of examples and to adapt to change using limited time and memory while being ready to predict at any point.
引用
收藏
页码:243 / 272
页数:29
相关论文
共 50 条
  • [21] Scalable Multi-label Annotation
    Deng, Jia
    Russakovsky, Olga
    Krause, Jonathan
    Bernstein, Michael S.
    Berg, Alex
    Li Fei-Fei
    32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), 2014, : 3099 - 3102
  • [22] A Survey on Multi-Label Data Stream Classification
    Zheng, Xiulin
    Li, Peipei
    Chu, Zhe
    Hu, Xuegang
    IEEE ACCESS, 2020, 8 : 1249 - 1275
  • [23] Unsupervised concept drift detection for multi-label data streams
    Ege Berkay Gulcan
    Fazli Can
    Artificial Intelligence Review, 2023, 56 : 2401 - 2434
  • [24] Incremental deep forest for multi-label data streams learning
    Liang, Shunpan
    Pan, Weiwei
    You, Dianlong
    Liu, Ze
    Yin, Ling
    APPLIED INTELLIGENCE, 2022, 52 (12) : 13398 - 13414
  • [25] Unsupervised concept drift detection for multi-label data streams
    Gulcan, Ege Berkay
    Can, Fazli
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2401 - 2434
  • [26] Drift Detection for Multi-label Data Streams Based on Label Grouping and Entropy
    Shi, Zhongwei
    Wen, Yimin
    Feng, Chao
    Zhao, Hai
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2014, : 724 - 731
  • [27] Evolving multi-label classification rules by exploiting high-order label correlations
    Nazmi, Shabnam
    Yan, Xuyang
    Homaifar, Abdollah
    Doucette, Emily
    NEUROCOMPUTING, 2020, 417 : 176 - 186
  • [28] A Scalable Clustering-Based Local Multi-Label Classification Method
    Sun, Lu
    Kudo, Mineichi
    Kimura, Keigo
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 261 - 268
  • [29] Online Multi-Label Classification with Scalable Margin Robust to Missing Labels
    Zou, Yizhang
    Hu, Xuegang
    Li, Peipei
    2023 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH, ICKG, 2023, : 274 - 281
  • [30] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785