Positional scoring-based allocation of indivisible goods

被引:0
|
作者
Dorothea Baumeister
Sylvain Bouveret
Jérôme Lang
Nhan-Tam Nguyen
Trung Thanh Nguyen
Jörg Rothe
Abdallah Saffidine
机构
[1] Heinrich-Heine Universität Düsseldorf,LAMSADE
[2] Univ. Grenoble Alpes,undefined
[3] CNRS,undefined
[4] LIG,undefined
[5] Université Paris-Dauphine,undefined
[6] Place du Maréchal de Lattre de Tassigny,undefined
[7] Hai Phong University,undefined
[8] University of New South Wales,undefined
关键词
Computational social choice; Resource allocation; Fair division; Indivisible goods; Preferences;
D O I
暂无
中图分类号
学科分类号
摘要
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector s=(s1,…,sm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = (s_1, \ldots , s_m)$$\end{document} consists of m nonincreasing, nonnegative weights, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} such as, typically, +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} or min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document}. The rule associated with s and ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.
引用
收藏
页码:628 / 655
页数:27
相关论文
共 50 条
  • [41] Strategy-proof and nonbossy allocation of indivisible goods and money
    Lars-Gunnar Svensson
    Bo Larsson
    Economic Theory, 2002, 20 : 483 - 502
  • [42] Worst case compromises in matroids with applications to the allocation of indivisible goods
    Gourves, Laurent
    Monnot, Jerome
    Tlilane, Lydia
    THEORETICAL COMPUTER SCIENCE, 2015, 589 : 121 - 140
  • [43] Fair allocation of indivisible goods: the two-agent case
    Ramaekers, Eve
    SOCIAL CHOICE AND WELFARE, 2013, 41 (02) : 359 - 380
  • [44] STRATEGY-PROOF ALLOCATION OF INDIVISIBLE GOODS AMONG COUPLES
    Rhee, Sangkyu
    JAPANESE ECONOMIC REVIEW, 2011, 62 (02) : 289 - 303
  • [45] On the Max-Min Fair Stochastic Allocation of Indivisible Goods
    Kawase, Yasushi
    Sumita, Hanna
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2070 - 2078
  • [46] Pareto-Optimal Allocation of Indivisible Goods with Connectivity Constraints
    Igarashi, Ayumi
    Peters, Dominik
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 2045 - 2052
  • [48] Almost Group Envy-free Allocation of Indivisible Goods and Chores
    Aziz, Haris
    Rey, Simon
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 39 - 45
  • [49] PROPORTIONAL ALLOCATION OF INDIVISIBLE GOODS UP TO THE LEAST VALUED GOOD ON AVERAGE
    Kobayashi, Yusuke
    Mahara, Ryoga
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2025, 39 (01) : 533 - 549
  • [50] Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem
    Audemard, Gilles
    Lecoutre, Christophe
    Samy-Modeliar, Mouny
    Goncalves, Gilles
    Porumbel, Daniel
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2014, 2014, 8656 : 125 - 141