Positional scoring-based allocation of indivisible goods

被引:0
|
作者
Dorothea Baumeister
Sylvain Bouveret
Jérôme Lang
Nhan-Tam Nguyen
Trung Thanh Nguyen
Jörg Rothe
Abdallah Saffidine
机构
[1] Heinrich-Heine Universität Düsseldorf,LAMSADE
[2] Univ. Grenoble Alpes,undefined
[3] CNRS,undefined
[4] LIG,undefined
[5] Université Paris-Dauphine,undefined
[6] Place du Maréchal de Lattre de Tassigny,undefined
[7] Hai Phong University,undefined
[8] University of New South Wales,undefined
关键词
Computational social choice; Resource allocation; Fair division; Indivisible goods; Preferences;
D O I
暂无
中图分类号
学科分类号
摘要
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector s=(s1,…,sm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = (s_1, \ldots , s_m)$$\end{document} consists of m nonincreasing, nonnegative weights, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} such as, typically, +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} or min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document}. The rule associated with s and ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.
引用
收藏
页码:628 / 655
页数:27
相关论文
共 50 条
  • [21] Groupwise Maximin Fair Allocation of Indivisible Goods
    Barman, Siddharth
    Biswas, Arpita
    Krishnamurthy, Sanath Kumar
    Narahari, Yadati
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 916 - 923
  • [22] FAIR ALLOCATION OF INDIVISIBLE GOODS AND CRITERIA OF JUSTICE
    ALKAN, A
    DEMANGE, G
    GALE, D
    ECONOMETRICA, 1991, 59 (04) : 1023 - 1039
  • [23] Welfare of Sequential Allocation Mechanisms for Indivisible Goods
    Aziz, Haris
    Kalinowski, Thomas
    Walsh, Toby
    Xia, Lirong
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 787 - 794
  • [24] Fair Allocation of Indivisible Goods: Improvements and Generalizations
    Ghodsi, Mohammad
    Hajiaghayi, MohammadTaghi
    Seddighin, Masoud
    Seddighin, Saeed
    Yami, Hadi
    ACM EC'18: PROCEEDINGS OF THE 2018 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2018, : 539 - 556
  • [25] Fair allocation of indivisible goods to asymmetric agents
    Farhadi A.
    Ghodsi M.
    Hajiaghayi M.
    Lahaie S.
    Pennock D.
    Seddighin M.
    Seddighin S.
    Yami H.
    Journal of Artificial Intelligence Research, 2019, 64 : 1 - 20
  • [26] Fair allocation in a general model with indivisible goods
    Beviá C.
    Review of Economic Design, 1998, 3 (3) : 195 - 213
  • [27] Fair Allocation of Indivisible Goods to Asymmetric Agents
    Farhadi, Alireza
    Ghodsi, Mohammad
    Hajiaghayi, MohammadTaghi
    Lahaie, Sebastien
    Pennock, David
    Seddighin, Masoud
    Seddighin, Saeed
    Yami, Hadi
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 64 : 1 - 20
  • [28] Fair Allocation of Indivisible Goods to Asymmetric Agents
    Farhadi, Alireza
    Ghodsi, Mohammad
    Lahaie, Sebastien
    Pennock, David
    Seddighin, Masoud
    Seddighin, Saeed
    Yami, Hadi
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1535 - 1537
  • [29] Strategy-proof allocation of indivisible goods
    Lars-Gunnar Svensson
    Social Choice and Welfare, 1999, 16 : 557 - 567
  • [30] Non-Proportional Allocation of Indivisible Goods
    Cegielka, Katarzyna
    EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES, 2020, : 4442 - 4448