Positional scoring-based allocation of indivisible goods

被引:0
|
作者
Dorothea Baumeister
Sylvain Bouveret
Jérôme Lang
Nhan-Tam Nguyen
Trung Thanh Nguyen
Jörg Rothe
Abdallah Saffidine
机构
[1] Heinrich-Heine Universität Düsseldorf,LAMSADE
[2] Univ. Grenoble Alpes,undefined
[3] CNRS,undefined
[4] LIG,undefined
[5] Université Paris-Dauphine,undefined
[6] Place du Maréchal de Lattre de Tassigny,undefined
[7] Hai Phong University,undefined
[8] University of New South Wales,undefined
关键词
Computational social choice; Resource allocation; Fair division; Indivisible goods; Preferences;
D O I
暂无
中图分类号
学科分类号
摘要
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector s=(s1,…,sm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = (s_1, \ldots , s_m)$$\end{document} consists of m nonincreasing, nonnegative weights, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} such as, typically, +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} or min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document}. The rule associated with s and ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.
引用
收藏
页码:628 / 655
页数:27
相关论文
共 50 条
  • [31] Strategy-proof allocation of indivisible goods
    Svensson, LG
    SOCIAL CHOICE AND WELFARE, 1999, 16 (04) : 557 - 567
  • [32] Efficient Allocation of Indivisible Goods in Pseudomarkets with Constraints
    Gul, Faruk
    Pesendorfer, Wolfgang
    Zhang, Mu
    JOURNAL OF POLITICAL ECONOMY, 2024, 132 (11) : 3708 - 3736
  • [33] On Fairness via Picking Sequences in Allocation of Indivisible Goods
    Gourves, Laurent
    Lesca, Julien
    Wilczynski, Anaelle
    ALGORITHMIC DECISION THEORY, ADT 2021, 2021, 13023 : 258 - 272
  • [34] Fair allocation of indivisible goods: Beyond additive valuations
    Ghodsi, Mohammad
    HajiAghayi, MohammadTaghi
    Seddighin, Masoud
    Seddighin, Saeed
    Yami, Hadi
    ARTIFICIAL INTELLIGENCE, 2022, 303
  • [35] Document Summarization using a Scoring-Based Representation
    Villa Monte, Augusto
    Lanzarini, Laura
    Rojas Flores, Luis
    Olivas Varela, Jose A.
    PROCEEDINGS OF THE 2016 XLII LATIN AMERICAN COMPUTING CONFERENCE (CLEI), 2016,
  • [36] Fair allocation of indivisible goods with minimum inequality or minimum envy
    Cornilly, Dries
    Puccetti, Giovanni
    Rueschendorf, Ludger
    Vanduffel, Steven
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 297 (02) : 741 - 752
  • [37] Strategy-proof and nonbossy allocation of indivisible goods and money
    Svensson, LG
    Larsson, B
    ECONOMIC THEORY, 2002, 20 (03) : 483 - 502
  • [38] Strategy-Proof Allocation of Indivisible Goods among Couples
    Sangkyu Rhee
    The Japanese Economic Review, 2011, 62 : 289 - 303
  • [39] Fair allocation of indivisible goods: the two-agent case
    Eve Ramaekers
    Social Choice and Welfare, 2013, 41 : 359 - 380
  • [40] Envy-free allocation of indivisible goods with money and externalities
    Nakada, Satoshi
    ECONOMICS BULLETIN, 2018, 38 (01): : 52 - +