Positional scoring-based allocation of indivisible goods

被引:0
|
作者
Dorothea Baumeister
Sylvain Bouveret
Jérôme Lang
Nhan-Tam Nguyen
Trung Thanh Nguyen
Jörg Rothe
Abdallah Saffidine
机构
[1] Heinrich-Heine Universität Düsseldorf,LAMSADE
[2] Univ. Grenoble Alpes,undefined
[3] CNRS,undefined
[4] LIG,undefined
[5] Université Paris-Dauphine,undefined
[6] Place du Maréchal de Lattre de Tassigny,undefined
[7] Hai Phong University,undefined
[8] University of New South Wales,undefined
关键词
Computational social choice; Resource allocation; Fair division; Indivisible goods; Preferences;
D O I
暂无
中图分类号
学科分类号
摘要
We define a family of rules for dividing m indivisible goods among agents, parameterized by a scoring vector and a social welfare aggregation function. We assume that agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent reports her preferences simply by ranking single goods. Similarly to positional scoring rules in voting, a scoring vector s=(s1,…,sm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = (s_1, \ldots , s_m)$$\end{document} consists of m nonincreasing, nonnegative weights, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} is the score of a good assigned to an agent who ranks it in position i. The global score of an allocation for an agent is the sum of the scores of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores of all agents, for some aggregation function ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} such as, typically, +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} or min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document}. The rule associated with s and ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} maps a profile to (one of) the allocation(s) maximizing social welfare. After defining this family of rules, and focusing on some key examples, we investigate some of the social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity, and separability. Finally, we focus on the computation of winning allocations, and on their approximation: we show that for commonly used scoring vectors and aggregation functions this problem is NP-hard and we exhibit some tractable particular cases.
引用
收藏
页码:628 / 655
页数:27
相关论文
共 50 条
  • [1] Positional scoring-based allocation of indivisible goods
    Baumeister, Dorothea
    Bouveret, Sylvain
    Lang, Jerome
    Nhan-Tam Nguyen
    Trung Thanh Nguyen
    Rothe, Joerg
    Saffidine, Abdallah
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2017, 31 (03) : 628 - 655
  • [2] Sequential Allocation Rules are Separable: Refuting a Conjecture on Scoring-Based Allocation of Indivisible Goods
    Kuckuck, Benno
    Rothe, Joerg
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 650 - 658
  • [3] Scoring Rules for the Allocation of Indivisible Goods
    Baumeister, Dorothea
    Bouveret, Sylvain
    Lang, Jerome
    Nhan-Tam Nguyen
    Trung Thanh Nguyen
    Rothe, Joerg
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 75 - +
  • [4] Strategy-proofness of scoring allocation correspondences for indivisible goods
    Nhan-Tam Nguyen
    Dorothea Baumeister
    Jörg Rothe
    Social Choice and Welfare, 2018, 50 : 101 - 122
  • [5] Strategy-Proofness of Scoring Allocation Correspondences for Indivisible Goods
    Nhan-Tam Nguyen
    Baumeister, Dorothea
    Rothe, Joerg
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1127 - 1133
  • [6] Strategy-proofness of scoring allocation correspondences for indivisible goods
    Nhan-Tam Nguyen
    Baumeister, Dorothea
    Rothe, Joerg
    SOCIAL CHOICE AND WELFARE, 2018, 50 (01) : 101 - 122
  • [7] Market allocation of indivisible goods
    Ichiishi, T
    Idzik, A
    JOURNAL OF MATHEMATICAL ECONOMICS, 1999, 32 (04) : 457 - 466
  • [8] QUEUE ALLOCATION OF INDIVISIBLE GOODS
    SVENSSON, LG
    SOCIAL CHOICE AND WELFARE, 1994, 11 (04) : 323 - 330
  • [9] An Allocation Algorithm of Indivisible Goods
    Shimizu, Kohei
    Manabe, Yoshifumi
    2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT), 2015,
  • [10] Fair allocation of indivisible goods and chores
    Haris Aziz
    Ioannis Caragiannis
    Ayumi Igarashi
    Toby Walsh
    Autonomous Agents and Multi-Agent Systems, 2022, 36