Non-minimal Degree-Sequence-Forcing Triples

被引:0
|
作者
Michael D. Barrus
Stephen G. Hartke
Mohit Kumbhat
机构
[1] Brigham Young University,Department of Mathematics
[2] University of Nebraska,Department of Mathematics
[3] Sungkyunkwan University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Degree-sequence-forcing set; Forbidden subgraphs; Degree sequence characterization; 2-switch; Potentially ; -graphic; Forcibly ; -graphic; 05C75; 05C07;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of graphs, a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} as an induced subgraph. We say that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a degree-sequence-forcing set if, for each graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} in the class C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free graphs, every realization of the degree sequence of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is also in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. A degree-sequence-forcing set is minimal if no proper subset is degree-sequence-forcing. We characterize the non-minimal degree-sequence-forcing sets F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} has size 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}.
引用
收藏
页码:1189 / 1209
页数:20
相关论文
共 50 条
  • [41] Non-minimal inflation and SUSY GUTs
    Okada, Nobuchika
    GUT2012, 2012, 1467 : 176 - 181
  • [42] Signals of non-minimal Higgs sectors
    Akeroyd, AG
    ACTA PHYSICA POLONICA B, 1996, 27 (07): : 1479 - 1492
  • [43] Asymptotically safe non-minimal inflation
    Tronconi, Alessandro
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (07):
  • [44] CHARACTERIZATION OF NON-MINIMAL TREE ACTIONS
    Carbone, Lisa
    Ciobanu, Laura
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (04): : 377 - 388
  • [45] CP AND NON-MINIMAL ELECTROMAGNETIC INTERACTIONS
    BARSHAY, S
    PHYSICS LETTERS, 1965, 17 (01): : 78 - &
  • [46] NON-MINIMAL ROOTS IN HOMOTOPY TREES
    DYER, MN
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 80 (02) : 371 - 380
  • [47] Non-minimal tinges of Unimodular Gravity
    Herrero-Valea, Mario
    Santos-Garcia, Raquel
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [48] Symmetron with a non-minimal kinetic term
    Honardoost, M.
    Mota, D. F.
    Sepangi, H. R.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (11):
  • [49] Large non-Gaussianity in non-minimal inflation
    Gong, Jinn-Ouk
    Lee, Hyun Min
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (11):
  • [50] Supersymmetric hybrid inflation with minimal and non-minimal Kahler potential
    Bastero-Gil, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) : 6859 - 6864