Non-minimal Degree-Sequence-Forcing Triples

被引:0
|
作者
Michael D. Barrus
Stephen G. Hartke
Mohit Kumbhat
机构
[1] Brigham Young University,Department of Mathematics
[2] University of Nebraska,Department of Mathematics
[3] Sungkyunkwan University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Degree-sequence-forcing set; Forbidden subgraphs; Degree sequence characterization; 2-switch; Potentially ; -graphic; Forcibly ; -graphic; 05C75; 05C07;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of graphs, a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} as an induced subgraph. We say that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a degree-sequence-forcing set if, for each graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} in the class C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free graphs, every realization of the degree sequence of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is also in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. A degree-sequence-forcing set is minimal if no proper subset is degree-sequence-forcing. We characterize the non-minimal degree-sequence-forcing sets F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} has size 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}.
引用
收藏
页码:1189 / 1209
页数:20
相关论文
共 50 条
  • [21] STABILITY OF SOLUTIONS TO MINIMAL AND NON-MINIMAL DESIGN PROBLEMS
    WOLOVICH, WA
    ANTSAKLIS, P
    ELLIOTT, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (01) : 88 - 94
  • [22] Non-minimal sums of disjoint products
    Traldi, L
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (05) : 533 - 538
  • [23] Anisotropy in inflation with non-minimal coupling
    Chen, Bin
    Jin, Zhuang-wei
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (09):
  • [24] Aspects of non-minimal gauge mediation
    Satoshi Shirai
    Masahito Yamazaki
    Kazuya Yonekura
    Journal of High Energy Physics, 2010
  • [25] Clockwork inflation with non-minimal coupling
    Park, Seong Chan
    Shin, Chang Sub
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (06):
  • [26] On the dissipative non-minimal braneworld inflation
    Nozari, Kourosh
    Shoukrani, M.
    ASTROPHYSICS AND SPACE SCIENCE, 2012, 339 (01) : 111 - 121
  • [27] Non-minimal M-flation
    Ashoorioon, Amjad
    Rezazadeh, Kazem
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
  • [28] Non-minimal tinges of Unimodular Gravity
    Mario Herrero-Valea
    Raquel Santos-Garcia
    Journal of High Energy Physics, 2020
  • [29] A COSMOLOGICAL MODEL WITH A NON-MINIMAL COUPLING
    DERITIS, R
    PLATANIA, G
    SCUDELLARO, P
    STORNAIOLO, C
    PHYSICS LETTERS A, 1989, 138 (03) : 95 - 101
  • [30] Null systems in the non-minimal case
    QIU, J. I. A. H. A. O.
    ZHAO, J. I. A. N. J. I. E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) : 3420 - 3437