Non-minimal Degree-Sequence-Forcing Triples

被引:0
|
作者
Michael D. Barrus
Stephen G. Hartke
Mohit Kumbhat
机构
[1] Brigham Young University,Department of Mathematics
[2] University of Nebraska,Department of Mathematics
[3] Sungkyunkwan University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Degree-sequence-forcing set; Forbidden subgraphs; Degree sequence characterization; 2-switch; Potentially ; -graphic; Forcibly ; -graphic; 05C75; 05C07;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of graphs, a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} as an induced subgraph. We say that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a degree-sequence-forcing set if, for each graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} in the class C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free graphs, every realization of the degree sequence of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is also in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. A degree-sequence-forcing set is minimal if no proper subset is degree-sequence-forcing. We characterize the non-minimal degree-sequence-forcing sets F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} has size 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}.
引用
收藏
页码:1189 / 1209
页数:20
相关论文
共 50 条
  • [31] Aspects of non-minimal gauge mediation
    Shirai, Satoshi
    Yamazaki, Masahito
    Yonekura, Kazuya
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [32] Non-minimal coupling of photons and axions
    Balakin, Alexander B.
    Ni, Wei-Tou
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (05)
  • [33] Electroweak stability and non-minimal coupling
    Postma, Marieke
    van de Vis, Jorinde
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05):
  • [34] On the non-minimal gravitational coupling to matter
    Bertolami, O.
    Paramos, J.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (24)
  • [35] Finite Type Non-Minimal Submanifolds
    宋鸿藻
    吴报强
    数学季刊, 1992, (04) : 76 - 83
  • [36] On the dissipative non-minimal braneworld inflation
    Kourosh Nozari
    M. Shoukrani
    Astrophysics and Space Science, 2012, 339 : 111 - 121
  • [37] Stability of a Viable Non-Minimal Bounce
    Nandi, Debottam
    UNIVERSE, 2021, 7 (03)
  • [38] Clockwork inflation with non-minimal coupling
    Seong Chan Park
    Chang Sub Shin
    The European Physical Journal C, 2019, 79
  • [39] ON NON-MINIMAL MARTIN BOUNDARY POINTS
    IKEGAMI, T
    NAGOYA MATHEMATICAL JOURNAL, 1967, 29 (MAR) : 287 - &
  • [40] NON-MINIMAL COUPLING TORSION IN GRAVITATION
    BAKER, WM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (04): : 543 - 543