Non-minimal Degree-Sequence-Forcing Triples

被引:0
|
作者
Michael D. Barrus
Stephen G. Hartke
Mohit Kumbhat
机构
[1] Brigham Young University,Department of Mathematics
[2] University of Nebraska,Department of Mathematics
[3] Sungkyunkwan University,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Degree-sequence-forcing set; Forbidden subgraphs; Degree sequence characterization; 2-switch; Potentially ; -graphic; Forcibly ; -graphic; 05C75; 05C07;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of graphs, a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} does not contain any member of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} as an induced subgraph. We say that F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a degree-sequence-forcing set if, for each graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} in the class C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free graphs, every realization of the degree sequence of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is also in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document}. A degree-sequence-forcing set is minimal if no proper subset is degree-sequence-forcing. We characterize the non-minimal degree-sequence-forcing sets F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} has size 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}.
引用
收藏
页码:1189 / 1209
页数:20
相关论文
共 50 条
  • [1] Non-minimal Degree-Sequence-Forcing Triples
    Barrus, Michael D.
    Hartke, Stephen G.
    Kumbhat, Mohit
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1189 - 1209
  • [2] On non-minimal complements
    Biswas, Arindam
    Saha, Jyoti Prakash
    ADVANCES IN APPLIED MATHEMATICS, 2021, 130
  • [3] The minimal non-minimal standard model
    van der Bij, JJ
    PHYSICS LETTERS B, 2006, 636 (01) : 56 - 59
  • [4] FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY
    JUDAH, H
    SHELAH, S
    JOURNAL OF SYMBOLIC LOGIC, 1991, 56 (03) : 769 - 782
  • [5] Non-minimal unimodular inflation
    Malekpour, Manda
    Nozari, Kourosh
    Rajabi, Fateme
    Rashidi, Narges
    PHYSICS OF THE DARK UNIVERSE, 2024, 43
  • [6] NON-MINIMAL LCR MULTIPORTS
    ROSENBROCK, HH
    INTERNATIONAL JOURNAL OF CONTROL, 1974, 20 (01) : 1 - 16
  • [7] Non-minimal coupling branes
    Liu, Yu-Xiao
    Chen, Feng-Wei
    Guo, Heng
    Zhou, Xiang-Nan
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [8] Inflation by non-minimal coupling
    Park, Seong Chan
    Yamaguchi, Satoshi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (08):
  • [9] Is non-minimal inflation eternal?
    Feng, Chao-Jun
    Li, Xin-Zhou
    NUCLEAR PHYSICS B, 2010, 841 (1-2) : 178 - 187
  • [10] Non-minimal split supersymmetry
    Demidov, Sergei V.
    Gorbunov, Dmitry S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):