The zero-divisor graph of an amalgamated algebra

被引:0
|
作者
Y. Azimi
M. R. Doustimehr
机构
[1] University of Tabriz,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
关键词
Amalgamated algebra; Amalgamated duplication; Graph of zero-divisor; Trivial extension; Primary 05C25; 13A15; 13B99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and S be commutative rings with identity, f:R→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:R\rightarrow S$$\end{document} a ring homomorphism and J an ideal of S. Then the subring R⋈fJ:={(r,f(r)+j)∣r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$$\end{document} and j∈J}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in J\}$$\end{document} of R×S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\times S$$\end{document} is called the amalgamation of R with S along J with respect to f. In this paper, we generalize and improve recent results on the computation of the diameter of the zero-divisor graph of amalgamated algebras and obtain new results. In particular, we provide new characterizations for completeness of the zero-divisor graph of amalgamated algebra, as well as, a complete description for the diameter of the zero-divisor graph of amalgamations in the special case of finite rings.
引用
收藏
页码:1213 / 1225
页数:12
相关论文
共 50 条
  • [41] On the connectedness of the complement of the zero-divisor graph of a poset
    Devhare, Sarika
    Joshi, Vinayak
    LaGrange, John
    QUAESTIONES MATHEMATICAE, 2019, 42 (07) : 939 - 951
  • [42] A new approach to the diameter of zero-divisor graph
    A. Cherrabi
    H. Essannouni
    E. Jabbouri
    A. Ouadfel
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 545 - 554
  • [43] The zero-divisor graph of a commutative ring, II
    Anderson, DF
    Frazier, A
    Lauve, A
    Livingston, PS
    IDEAL THEORETIC METHODS IN COMMUTATIVE ALGEBRA, 2001, 220 : 61 - 72
  • [44] Strong zero-divisor graph of rings with involution
    Kumbhar, Nana
    Khairnar, Anil
    Waphare, B. N.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (10)
  • [45] The Wiener index of the zero-divisor graph of Zn
    Asir, T.
    Rabikka, V
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 461 - 471
  • [46] Zero-divisor graph of a ring with respect to an automorphism
    Avinash Patil
    Anil Khairnar
    P. S. Momale
    Soft Computing, 2022, 26 : 2107 - 2119
  • [47] Some remarks on the compressed zero-divisor graph
    Anderson, David F.
    LaGrange, John D.
    JOURNAL OF ALGEBRA, 2016, 447 : 297 - 321
  • [48] On a new extension of the zero-divisor graph (II)
    A. Cherrabi
    H. Essannouni
    E. Jabbouri
    A. Ouadfel
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2021, 62 : 945 - 953
  • [49] The total zero-divisor graph of a commutative ring
    Duric, Alen
    Jevdenic, Sara
    Oblak, Polona
    Stopar, Nik
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (10)
  • [50] A new approach to the diameter of zero-divisor graph
    Cherrabi, A.
    Essannouni, H.
    Jabbouri, E.
    Ouadfel, A.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (03): : 545 - 554