Let R and S be commutative rings with identity, f:R→S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:R\rightarrow S$$\end{document} a ring homomorphism and J an ideal of S. Then the subring R⋈fJ:={(r,f(r)+j)∣r∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$$\end{document} and j∈J}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$j\in J\}$$\end{document} of R×S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R\times S$$\end{document} is called the amalgamation of R with S along J with respect to f. In this paper, we generalize and improve recent results on the computation of the diameter of the zero-divisor graph of amalgamated algebras and obtain new results. In particular, we provide new characterizations for completeness of the zero-divisor graph of amalgamated algebra, as well as, a complete description for the diameter of the zero-divisor graph of amalgamations in the special case of finite rings.