The zero-divisor graph of an amalgamated algebra

被引:0
|
作者
Y. Azimi
M. R. Doustimehr
机构
[1] University of Tabriz,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
关键词
Amalgamated algebra; Amalgamated duplication; Graph of zero-divisor; Trivial extension; Primary 05C25; 13A15; 13B99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and S be commutative rings with identity, f:R→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:R\rightarrow S$$\end{document} a ring homomorphism and J an ideal of S. Then the subring R⋈fJ:={(r,f(r)+j)∣r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$$\end{document} and j∈J}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in J\}$$\end{document} of R×S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\times S$$\end{document} is called the amalgamation of R with S along J with respect to f. In this paper, we generalize and improve recent results on the computation of the diameter of the zero-divisor graph of amalgamated algebras and obtain new results. In particular, we provide new characterizations for completeness of the zero-divisor graph of amalgamated algebra, as well as, a complete description for the diameter of the zero-divisor graph of amalgamations in the special case of finite rings.
引用
收藏
页码:1213 / 1225
页数:12
相关论文
共 50 条
  • [21] Zero-divisor graph with respect to an ideal
    Maimani, HR
    Pournaki, MR
    Yassemi, S
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 923 - 929
  • [22] On zero-divisor graph of the ring Fp
    Annamalai, N.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 151 - 163
  • [23] On a New Extension of the Zero-Divisor Graph
    Cherrabi, A.
    Essannouni, H.
    Jabbouri, E.
    Ouadfel, A.
    ALGEBRA COLLOQUIUM, 2020, 27 (03) : 469 - 476
  • [24] INTERVALS OF POSETS OF A ZERO-DIVISOR GRAPH
    Lagrange, John D.
    MATHEMATICA SLOVACA, 2024, 74 (04) : 803 - 818
  • [25] THE ZERO-DIVISOR GRAPH ASSOCIATED TO A SEMIGROUP
    DeMeyer, Lisa
    Greve, Larisa
    Sabbaghi, Arman
    Wang, Jonathan
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3370 - 3391
  • [26] On zero-divisor graph of the ring Fp
    Annamalai, N.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 151 - 163
  • [27] The zero-divisor graph of a ring with involution
    Patil, Avinash
    Waphare, B. N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (03)
  • [28] The Zero-divisor Graph of Zn[X]]
    Park, Min Ji
    Kim, Eun Sup
    Lim, Jung Wook
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (04): : 723 - 729
  • [29] Zero-divisor graph of C(X)
    Azarpanah, F
    Motamedi, M
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) : 25 - 36
  • [30] The zero-divisor graph of a reduced ring
    Samei, Karim
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 813 - 821