The zero-divisor graph of an amalgamated algebra

被引:0
|
作者
Y. Azimi
M. R. Doustimehr
机构
[1] University of Tabriz,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
关键词
Amalgamated algebra; Amalgamated duplication; Graph of zero-divisor; Trivial extension; Primary 05C25; 13A15; 13B99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and S be commutative rings with identity, f:R→S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:R\rightarrow S$$\end{document} a ring homomorphism and J an ideal of S. Then the subring R⋈fJ:={(r,f(r)+j)∣r∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\bowtie ^fJ:=\{(r,f(r)+j)\mid r\in R$$\end{document} and j∈J}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in J\}$$\end{document} of R×S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\times S$$\end{document} is called the amalgamation of R with S along J with respect to f. In this paper, we generalize and improve recent results on the computation of the diameter of the zero-divisor graph of amalgamated algebras and obtain new results. In particular, we provide new characterizations for completeness of the zero-divisor graph of amalgamated algebra, as well as, a complete description for the diameter of the zero-divisor graph of amalgamations in the special case of finite rings.
引用
收藏
页码:1213 / 1225
页数:12
相关论文
共 50 条
  • [1] The zero-divisor graph of an amalgamated algebra
    Azimi, Y.
    Doustimehr, M. R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1213 - 1225
  • [2] The diameter of the zero-divisor graph of an amalgamated algebra
    Y. Azimi
    Collectanea Mathematica, 2019, 70 : 399 - 405
  • [3] The diameter of the zero-divisor graph of an amalgamated algebra
    Azimi, Y.
    COLLECTANEA MATHEMATICA, 2019, 70 (03) : 399 - 405
  • [4] The Zero-Divisor Graph of a Lattice
    E. Estaji
    K. Khashyarmanesh
    Results in Mathematics, 2012, 61 : 1 - 11
  • [5] The Zero-Divisor Graph of a Lattice
    Estaji, Ehsan
    Khashyarmanesh, Kazem
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 1 - 11
  • [6] GENERALIZATIONS OF THE ZERO-DIVISOR GRAPH
    Anderson, David F.
    McClurkin, Grace
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 237 - 262
  • [7] On the zero-divisor graph of a ring
    Anderson, David F.
    Badawi, Ayman
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 3073 - 3092
  • [8] Strong resolving graph of a zero-divisor graph
    Nikandish, R.
    Nikmehr, M. J.
    Bakhtyiari, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [9] The zero-divisor graph of a commutative semigroup
    F. R. DeMeyer
    T. McKenzie
    K. Schneider
    Semigroup Forum, 2002, 65 : 206 - 214
  • [10] Strong resolving graph of a zero-divisor graph
    R. Nikandish
    M. J. Nikmehr
    M. Bakhtyiari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116