Adaptive Morley element algorithms for the biharmonic eigenvalue problem

被引:0
|
作者
Hao Li
Yidu Yang
机构
[1] Guizhou Normal University,The School of the Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Biharmonic eigenvalues; Morley elements; Adaptive algorithms; An inequality on Rayleigh quotient; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq2$\end{document}). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.
引用
收藏
相关论文
共 50 条
  • [41] THE TRANSITION TO A POINT CONSTRAINT IN A MIXED BIHARMONIC EIGENVALUE PROBLEM
    Lindsay, A. E.
    Ward, M. J.
    Kolokolnikov, T.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1193 - 1224
  • [42] The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem
    Feng, Jinhua
    Wang, Shixi
    Bi, Hai
    Yang, Yidu
    AIMS MATHEMATICS, 2024, 9 (02): : 3332 - 3348
  • [43] Multiscale finite element discretizations based on local defect correction for the biharmonic eigenvalue problem of plate buckling
    Wang, Shijie
    Yang, Yidu
    Bi, Hai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (03) : 999 - 1017
  • [44] The adaptive finite element method for the Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    OPEN MATHEMATICS, 2020, 18 : 216 - 236
  • [45] Convergence and optimality of the adaptive Morley element method
    Jun Hu
    Zhongci Shi
    Jinchao Xu
    Numerische Mathematik, 2012, 121 : 731 - 752
  • [46] ALGORITHMS FOR INVERSE EIGENVALUE PROBLEM
    MOREL, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (26): : 1653 - 1655
  • [47] Convergence and optimality of the adaptive Morley element method
    Hu, Jun
    Shi, Zhongci
    Xu, Jinchao
    NUMERISCHE MATHEMATIK, 2012, 121 (04) : 731 - 752
  • [48] ALGORITHMS FOR INVERSE EIGENVALUE PROBLEM
    MOREL, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 13 (03) : 251 - 273
  • [49] ALGORITHMS FOR NONLINEAR EIGENVALUE PROBLEM
    RUHE, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) : 674 - 689
  • [50] CHASING ALGORITHMS FOR THE EIGENVALUE PROBLEM
    WATKINS, DS
    ELSNER, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (02) : 374 - 384