Adaptive Morley element algorithms for the biharmonic eigenvalue problem

被引:0
|
作者
Hao Li
Yidu Yang
机构
[1] Guizhou Normal University,The School of the Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Biharmonic eigenvalues; Morley elements; Adaptive algorithms; An inequality on Rayleigh quotient; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq2$\end{document}). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.
引用
收藏
相关论文
共 50 条
  • [31] Blind adaptive beamforming algorithms based on the extreme eigenvalue problem
    Choi, S
    Yun, DU
    Lee, H
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 2418 - 2421
  • [32] A new mixed method for the biharmonic eigenvalue problem
    Kosin, V.
    Beuchler, S.
    Wick, T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 136 : 44 - 53
  • [33] Eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme
    Chen, W
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (03) : 512 - 520
  • [34] AN ADAPTIVE FINITE ELEMENT METHOD FOR THE ELASTIC TRANSMISSION EIGENVALUE PROBLEM
    ZHANG, X. U. Q. I. N. G.
    HAN, J. I. A. Y. U.
    YANG, Y. I. D. U.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022,
  • [35] A Type of Cascadic Adaptive Finite Element Method for Eigenvalue Problem
    Xu, Fei
    Huang, Qiumei
    Chen, Shuangshuang
    Ma, Hongkun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 774 - 796
  • [36] AN ADAPTIVE FINITE ELEMENT METHOD FOR THE ELASTIC TRANSMISSION EIGENVALUE PROBLEM
    Zhang, Xuqing
    Han, Jiayu
    Yang, Yidu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1367 - 1392
  • [37] An Adaptive Nonconforming Finite Element Algorithm for Laplace Eigenvalue Problem
    Yu, Yuanyuan
    Yang, Yidu
    Han, Jiayu
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem
    Meng, Jian
    Mei, Liquan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [39] Convergence of V-cycle and F-cycle multigrid methods for the biharmonic problem using the morley element
    Zhao, J
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 112 - 132
  • [40] Lower bounds of eigenvalues of the biharmonic operators by the rectangular Morley element methods
    Hu, Jun
    Yang, Xueqin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) : 1623 - 1644