Adaptive Morley element algorithms for the biharmonic eigenvalue problem

被引:0
|
作者
Hao Li
Yidu Yang
机构
[1] Guizhou Normal University,The School of the Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Biharmonic eigenvalues; Morley elements; Adaptive algorithms; An inequality on Rayleigh quotient; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq2$\end{document}). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.
引用
收藏
相关论文
共 50 条
  • [21] Adaptive finite element methods for the Laplace eigenvalue problem
    Hoppe, R. H. W.
    Wu, H.
    Zhang, Z.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 281 - 302
  • [22] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Han, Jiayu
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 1279 - 1300
  • [23] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Jiayu Han
    Yidu Yang
    Journal of Scientific Computing, 2016, 69 : 1279 - 1300
  • [24] The interior penalty virtual element method for the two-dimensional biharmonic eigenvalue problem
    Meng, Jian
    Xu, Bing-Bing
    Su, Fang
    Qian, Xu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [25] Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration
    Zhao, Ruilin
    Yang, Yidu
    Bi, Hai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 851 - 869
  • [26] Local and parallel finite element algorithms for the Steklov eigenvalue problem
    Bi, Hai
    Li, Zhengxia
    Yang, Yidu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 399 - 417
  • [27] Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem
    Hai Bi
    Jiayu Han
    Yidu Yang
    Journal of Scientific Computing, 2019, 78 : 351 - 375
  • [28] Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem
    Bi, Hai
    Han, Jiayu
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 351 - 375
  • [29] EIGENVALUE PROBLEM OF BIHARMONIC EQUATION WITH HARDY POTENTIAL
    Yao, Yangxin
    He, Shaotong
    Su, Qingtang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (06) : 1123 - 1135
  • [30] The eigenvalue problem for the 1-biharmonic operator
    Parini, Enea
    Ruf, Bernhard
    Tarsi, Cristina
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (02) : 307 - 332