Adaptive Morley element algorithms for the biharmonic eigenvalue problem

被引:0
|
作者
Hao Li
Yidu Yang
机构
[1] Guizhou Normal University,The School of the Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Biharmonic eigenvalues; Morley elements; Adaptive algorithms; An inequality on Rayleigh quotient; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\geq2$\end{document}). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on Rayleigh quotient and use it to prove the efficiency of the adaptive algorithms. Numerical experiments show that these algorithms are efficient and can get the optimal convergence rate.
引用
收藏
相关论文
共 50 条