Maximal Attractors for the Klein-Gordon-Schrödinger Equation in Unbounded Domain

被引:0
|
作者
Jong Yeoul Park
Jung Ae Kim
机构
[1] Pusan National University,Department of Mathematics, College of Science
[2] National Institute for Mathematical Sciences,undefined
来源
Acta Applicandae Mathematicae | 2009年 / 108卷
关键词
Maximal attractor; Absorbing set; Unbounded domain; Klein-Gordon-Schrödinger equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the behavior of solutions for the Klein-Gordon-Schrödinger equation in the whole space ℝ. We first prove the continuity of the solutions on initial data and then establish the asymptotic smoothness of solutions. Finally, we show the existence of the maximal attractor.
引用
收藏
页码:197 / 213
页数:16
相关论文
共 50 条
  • [21] Invariant measures of stochastic Klein-Gordon-Schrödinger equations on infinite lattices
    Mi, Shaoyue
    Li, Dingshi
    Freitas, Mirelson M.
    Caraballo, Tomas
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (03)
  • [22] Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations
    M.M. Cavalcanti
    V.N. Domingos Cavalcanti
    Nonlinear Differential Equations and Applications NoDEA, 2000, 7 : 285 - 307
  • [23] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations
    KONG LingHua
    WANG Lan
    JIANG ShanShan
    DUAN YaLi
    ScienceChina(Mathematics), 2013, 56 (05) : 916 - 933
  • [24] 分数阶Klein-Gordon-Schr?dinger方程的保能量方法
    张利娟
    孙建强
    江西师范大学学报(自然科学版), 2022, 46 (03) : 257 - 261
  • [25] Uniform decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping
    V. Bisognin
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    J. Soriano
    Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 91 - 113
  • [26] ON THE EXISTENCE THEORY OF A TIME-SPACE FRACTIONAL KLEIN-GORDON-SCHRÖDINGER SYSTEM
    Banquet, Carlos
    Guerra, Nafer
    Villamizar-Roa, eLDER J.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (04) : 407 - 426
  • [27] 分数阶Klein-Gordon-Schr?dinger方程弱解的存在性
    赖满丰
    金玲玉
    佛山科学技术学院学报(自然科学版), 2017, 35 (03) : 13 - 18
  • [28] 非线性Klein-Gordon-Schr?dinger(KGS)方程的数值解法
    杨玉娜
    李宏伟
    山东师范大学学报(自然科学版), 2020, 35 (04) : 413 - 417
  • [29] A NOTE ON NONAUTONOMOUS KLEIN-GORDON-SCHRDINGER EQUATIONS WITH HOMOGENEOUS DIRICHLET BOUNDARY CONDITION
    赵才地
    周盛凡
    李用声
    Acta Mathematica Scientia, 2008, (04) : 823 - 833
  • [30] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrödinger equations
    LingHua Kong
    Lan Wang
    ShanShan Jiang
    YaLi Duan
    Science China Mathematics, 2013, 56 : 915 - 932