分数阶Klein-Gordon-Schr?dinger方程的保能量方法

被引:0
|
作者
张利娟
孙建强
机构
[1] 海南大学理学院
关键词
平均向量场方法; 分数阶Klein-Gordon-Schr9dinger方程; 傅里叶拟谱方法; 能量守恒格式;
D O I
10.16357/j.cnki.issn1000-5862.2022.03.07
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
该文先将分数阶Klein-Gordon-Schr9dinger方程转化成辛结构的哈密尔顿系统,利用傅里叶拟谱方法对Riesz空间分数阶导数进行近似离散,得到分数阶Klein-Gordon-Schr9dinger方程有限维哈密尔顿系统;再利用2阶平均向量场方法对有限维哈密尔顿系统离散,得到分数阶Klein-Gordon-Schr9dinger方程新的保能量格式;最后利用新的保能量格式数值模拟方程孤立波的演化行为,并分析新格式的保能量守恒特性.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 15 条
  • [1] Global well-posedness of the fractional Klein-Gordon-Schr¨odinger system with rough initial data
    HUANG Chun Yan
    GUO Bo Ling
    HUANG Dai Wen
    LI Qiao Xin
    [J]. Science China(Mathematics), 2016, 59 (07) : 1345 - 1366
  • [2] 非线性薛定谔方程的平均向量场方法
    李昊辰
    孙建强
    骆思宇
    [J]. 计算数学, 2013, 35 (01) : 59 - 66
  • [3] 分数阶偏微分方程数值方法及其应用[M]. 科学出版社 , 刘发旺, 2015
  • [4] Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schr?dinger equations[J] . Junjie Wang,Aiguo Xiao.Applied Mathematics and Computation . 2019
  • [5] A novel kind of efficient symplectic scheme for Klein–Gordon–Schr?dinger equation[J] . Linghua Kong,Meng Chen,Xiuling Yin.Applied Numerical Mathematics . 2018
  • [6] Structure-preserving numerical methods for the fractional Schr?dinger equation[J] . Pengde Wang,Chengming Huang.Applied Numerical Mathematics . 2018
  • [7] An efficient conservative difference scheme for fractional Klein–Gordon–Schr?dinger equations[J] . Jun-jie Wang,Ai-guo Xiao.Applied Mathematics and Computation . 2018
  • [8] A fourth-order AVF method for the numerical integration of sine-Gordon equation[J] . Chaolong Jiang,Jianqiang Sun,Haochen Li,Yifan Wang.Applied Mathematics and Computation . 2017
  • [9] High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions
    Ding, Hengfei
    Li, Changpin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (02) : 759 - 784
  • [10] A conservative difference scheme for solving the strongly coupled nonlinear fractional Schr?dinger equations[J] . Maohua Ran,Chengjian Zhang.Communications in Nonlinear Science and Numerical Simulation . 2016