Maximal Attractors for the Klein-Gordon-Schrödinger Equation in Unbounded Domain

被引:0
|
作者
Jong Yeoul Park
Jung Ae Kim
机构
[1] Pusan National University,Department of Mathematics, College of Science
[2] National Institute for Mathematical Sciences,undefined
来源
Acta Applicandae Mathematicae | 2009年 / 108卷
关键词
Maximal attractor; Absorbing set; Unbounded domain; Klein-Gordon-Schrödinger equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the behavior of solutions for the Klein-Gordon-Schrödinger equation in the whole space ℝ. We first prove the continuity of the solutions on initial data and then establish the asymptotic smoothness of solutions. Finally, we show the existence of the maximal attractor.
引用
收藏
页码:197 / 213
页数:16
相关论文
共 50 条
  • [41] Klein-Gordon-Schrdinger方程组的精确孤立波解
    夏静娜
    韩淑霞
    王明亮
    应用数学和力学, 2002, (01) : 52 - 58
  • [42] Global attractors for the Klein-Gordon-Schrodinger equation in unbounded domains
    Lu, KN
    Wang, BX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 281 - 316
  • [43] Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein–Gordon Equation
    Wolf-Patrick Düll
    Communications in Mathematical Physics, 2017, 355 : 1189 - 1207
  • [44] Novel structure-preserving schemes for stochastic Klein-Gordon-Schrödinger equations with additive noise
    Hong, Jialin
    Hou, Baohui
    Sun, Liying
    Zhang, Xiaojing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 500
  • [45] Mass-, and Energy Preserving Schemes with Arbitrarily High Order for the Klein-Gordon-Schrödinger Equations
    Fu, Yayun
    Gu, Xuelong
    Wang, Yushun
    Cai, Wenjun
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
  • [46] (1+1)维耦合Klein-Gordon-Schrdinger方程的周期解
    曹瑞
    四川师范大学学报(自然科学版), 2009, 32 (01) : 72 - 76
  • [47] Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data
    ChunYan Huang
    BoLing Guo
    DaiWen Huang
    QiaoXin Li
    Science China Mathematics, 2016, 59 : 1345 - 1366
  • [48] 求解耦合非线性Klein-Gordon-Schr?dinger方程的能量稳定方法
    郭姣姣
    庄清渠
    华侨大学学报(自然科学版), 2023, 44 (04) : 533 - 540
  • [49] 耦合耗散Klein-Gordon-Schr■dinger方程组的整体吸引子(英)
    李用声
    陈庆益
    应用数学, 1997, (04) : 44 - 49
  • [50] A numerical investigation with energy-preservation for nonlinear space-fractional Klein-Gordon-Schrödinger system
    Mohammadi, Soheila
    Fardi, Mojtaba
    Ghasemi, Mehdi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):