Maximal Attractors for the Klein-Gordon-Schrödinger Equation in Unbounded Domain

被引:0
|
作者
Jong Yeoul Park
Jung Ae Kim
机构
[1] Pusan National University,Department of Mathematics, College of Science
[2] National Institute for Mathematical Sciences,undefined
来源
关键词
Maximal attractor; Absorbing set; Unbounded domain; Klein-Gordon-Schrödinger equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the behavior of solutions for the Klein-Gordon-Schrödinger equation in the whole space ℝ. We first prove the continuity of the solutions on initial data and then establish the asymptotic smoothness of solutions. Finally, we show the existence of the maximal attractor.
引用
收藏
页码:197 / 213
页数:16
相关论文
共 50 条
  • [1] Random attractors for the stochastic damped Klein-Gordon-Schrödinger system
    Xin Zhao
    Yin Li
    Advances in Difference Equations, 2015
  • [2] Maximal Attractors for the Klein-Gordon-Schrodinger Equation in Unbounded Domain
    Park, Jong Yeoul
    Kim, Jung Ae
    ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (02) : 197 - 213
  • [3] Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system
    Hengyan Li
    Lei Sun
    Advances in Difference Equations, 2014
  • [4] Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems
    黄锦舞
    韩晓莹
    周盛凡
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (12) : 1597 - 1607
  • [5] Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems
    Jin-wu Huang
    Xiao-ying Han
    Sheng-fan Zhou
    Applied Mathematics and Mechanics, 2009, 30 : 1597 - 1607
  • [6] Uniform Decay for the Coupled Klein-Gordon-Schrödinger Equation with Linear Memory
    Jong Yeoul Park
    Jung Ae Kim
    Acta Applicandae Mathematicae, 2010, 110 : 449 - 467
  • [7] Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation
    Meng Li
    Chengming Huang
    Yongliang Zhao
    Numerical Algorithms, 2020, 84 : 1081 - 1119
  • [8] Global attractor for Klein-Gordon-Schrödinger lattice system
    Fu-qi Yin
    Sheng-fan Zhou
    Chang-ming Yin
    Cui-hui Xiao
    Applied Mathematics and Mechanics, 2007, 28 : 695 - 706
  • [9] High-order conservative energy quadratization schemes for the Klein-Gordon-Schrödinger equation
    Xin Li
    Luming Zhang
    Advances in Computational Mathematics, 2022, 48
  • [10] On Coupled Klein-Gordon-Schrödinger Equations with Acoustic Boundary Conditions
    TaeGab Ha
    JongYeoul Park
    Boundary Value Problems, 2010