Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems

被引:2
|
作者
黄锦舞 [1 ]
韩晓莹 [2 ]
周盛凡 [1 ]
机构
[1] Department of Applied Mathematics,Shanghai Normal University
[2] Department of Mathematics and Statistics,Auburn University
基金
中国国家自然科学基金;
关键词
compact uniform attractor; non-autonomous; Klein-Gordon-Schrdinger lattice system; Kolmogorov entropy; upper semicontinuity;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrdinger lattice dynamical system is proved.An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained,and an upper semicontinuity of the compact uniform attractor is established.
引用
收藏
页码:1597 / 1607
页数:11
相关论文
共 50 条
  • [1] Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems
    Jin-wu Huang
    Xiao-ying Han
    Sheng-fan Zhou
    Applied Mathematics and Mechanics, 2009, 30 : 1597 - 1607
  • [2] Uniform attractors for non-autonomous Klein-Gordon-Schrodinger lattice systems
    Huang, Jin-wu
    Han, Xiao-ying
    Zhou, Sheng-fan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (12) : 1597 - 1607
  • [3] Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system
    Hengyan Li
    Lei Sun
    Advances in Difference Equations, 2014
  • [4] Uniform exponential attractors for non-autonomous Klein Gordon SchrOdinger lattice systems in weighted spaces
    Abdallah, Ahmed Y.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 127 : 279 - 297
  • [5] Maximal Attractors for the Klein-Gordon-Schrödinger Equation in Unbounded Domain
    Jong Yeoul Park
    Jung Ae Kim
    Acta Applicandae Mathematicae, 2009, 108 : 197 - 213
  • [6] Random attractors for the stochastic damped Klein-Gordon-Schrödinger system
    Xin Zhao
    Yin Li
    Advances in Difference Equations, 2015
  • [7] Global attractor for Klein-Gordon-Schrödinger lattice system
    Fu-qi Yin
    Sheng-fan Zhou
    Chang-ming Yin
    Cui-hui Xiao
    Applied Mathematics and Mechanics, 2007, 28 : 695 - 706
  • [8] Random uniform exponential attractors for non-autonomous stochastic Schr o?dinger lattice systems in weighted space
    Lin, Rou
    Zhao, Min
    Zhang, Jinlu
    AIMS MATHEMATICS, 2022, 8 (02): : 2871 - 2890
  • [9] Uniform Decay for the Coupled Klein-Gordon-Schrödinger Equation with Linear Memory
    Jong Yeoul Park
    Jung Ae Kim
    Acta Applicandae Mathematicae, 2010, 110 : 449 - 467
  • [10] Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations
    M.M. Cavalcanti
    V.N. Domingos Cavalcanti
    Nonlinear Differential Equations and Applications NoDEA, 2000, 7 : 285 - 307