Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems

被引:2
|
作者
黄锦舞 [1 ]
韩晓莹 [2 ]
周盛凡 [1 ]
机构
[1] Department of Applied Mathematics,Shanghai Normal University
[2] Department of Mathematics and Statistics,Auburn University
基金
中国国家自然科学基金;
关键词
compact uniform attractor; non-autonomous; Klein-Gordon-Schrdinger lattice system; Kolmogorov entropy; upper semicontinuity;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
070104 ;
摘要
The existence of a compact uniform attractor for a family of processes corresponding to the dissipative non-autonomous Klein-Gordon-Schrdinger lattice dynamical system is proved.An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained,and an upper semicontinuity of the compact uniform attractor is established.
引用
收藏
页码:1597 / 1607
页数:11
相关论文
共 50 条
  • [31] Uniform exponential attractors for second order non-autonomous lattice dynamical systems
    Xiao-peng Zhou
    Fu-qi Yin
    Sheng-fan Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 587 - 606
  • [32] Klein-Gordon-Schrdinger方程组的精确解
    李伟
    张金良
    河南科技大学学报(自然科学版), 2014, 35 (06) : 84 - 87+10
  • [33] Invariant measures of stochastic Klein-Gordon-Schrödinger equations on infinite lattices
    Mi, Shaoyue
    Li, Dingshi
    Freitas, Mirelson M.
    Caraballo, Tomas
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (03)
  • [34] Uniform attractors for non-autonomous random dynamical systems
    Cui, Hongyong
    Langa, Jose A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1225 - 1268
  • [35] Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations
    KONG LingHua
    WANG Lan
    JIANG ShanShan
    DUAN YaLi
    ScienceChina(Mathematics), 2013, 56 (05) : 916 - 933
  • [36] 分数阶Klein-Gordon-Schr?dinger方程的保能量方法
    张利娟
    孙建强
    江西师范大学学报(自然科学版), 2022, 46 (03) : 257 - 261
  • [37] ON THE EXISTENCE THEORY OF A TIME-SPACE FRACTIONAL KLEIN-GORDON-SCHRÖDINGER SYSTEM
    Banquet, Carlos
    Guerra, Nafer
    Villamizar-Roa, eLDER J.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (04) : 407 - 426
  • [38] Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation
    Meng Li
    Chengming Huang
    Yongliang Zhao
    Numerical Algorithms, 2020, 84 : 1081 - 1119
  • [39] 分数阶Klein-Gordon-Schr?dinger方程弱解的存在性
    赖满丰
    金玲玉
    佛山科学技术学院学报(自然科学版), 2017, 35 (03) : 13 - 18
  • [40] Pullback Exponential Attractors for Non-autonomous Lattice Systems
    Zhou, Shengfan
    Han, Xiaoying
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (03) : 601 - 631