Generalized Differential Identities of (Semi–)Prime Rings

被引:0
|
作者
Feng Wei
机构
[1] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Generalized differential identity; Generalized derivation; (Semi–)Prime ring; 16R50; 16W25; 16N60;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a semiprime ring with characteristic p ≥ 0 and RF be its left Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for an essential ideal of R, then ϕ(Zije(Δj)) is a generalized polynomial identity for RF, where e(Δj) are idempotents in the extended centroid of R determined by Δj. Let R be a prime ring and Q be its symmetric Martindale quotient ring. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity for a noncommutative Lie ideal of R, then ϕ(Zij) is a generalized polynomial identity for [R,R]. Moreover, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi {\left( {X^{{\Delta _{j} }}_{i} } \right)} $$\end{document} is a reduced generalized differential identity, with coefficients in Q, for a large right ideal of R, then ϕ(Zij is a generalized polynomial identity for Q.
引用
收藏
页码:823 / 832
页数:9
相关论文
共 50 条
  • [21] MINIMAL DIFFERENTIAL IDENTITIES IN PRIME-RINGS
    LANSKI, C
    JOURNAL OF ALGEBRA, 1990, 133 (02) : 472 - 489
  • [23] Some results on *-differential identities in prime rings
    Kumar, Deepak
    Bhushan, Bharat
    Sandhu, Gurninder S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (08)
  • [24] ON CERTAIN DIFFERENTIAL IDENTITIES IN PRIME RINGS WITH INVOLUTION
    Ashraf, Mohammad
    Siddeeque, Mohammad Aslam
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 33 - 44
  • [25] A Note on Differential Identities in Prime and Semiprime Rings
    Khan, Mohammad Shadab
    Raza, Mohd Arif
    Rehman, Nadeem Ur
    CONTEMPORARY MATHEMATICS, 2020, 1 (02): : 77 - 83
  • [26] MINIMAL DIFFERENTIAL IDENTITIES IN PRIME-RINGS
    LANSKI, C
    ISRAEL JOURNAL OF MATHEMATICS, 1986, 56 (02) : 231 - 246
  • [27] DIFFERENTIAL IDENTITIES IN PRIME-RINGS WITH INVOLUTION
    LANSKI, C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (02) : 765 - 787
  • [28] SEMI-PRIME NOETHERIAN RINGS WITH POLYNOMIAL IDENTITIES
    CAUCHON, G
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1976, 104 (01): : 99 - 111
  • [29] GENERALIZED DERIVATIONS ON PRIME RINGS SATISFYING CERTAIN IDENTITIES
    Al-Omary, Radwan Mohammed
    Nauman, Syed Khalid
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (02): : 229 - 238
  • [30] Identities related to generalized derivation on ideal in prime rings
    Tiwari S.K.
    Sharma R.K.
    Dhara B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 809 - 821